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ABSTRACT

The exponential increase of hardware-software complexity has
made it impossible for compiler engineers to find the right opti-
mization heuristics manually. Predictive models have been shown
to find near optimal heuristics with little human effort but they are
limited by a severe lack of diverse benchmarks to train on. Gener-
ative AI has been used by researchers to synthesize benchmarks
into existing datasets. However, the synthetic programs are short,
exceedingly simple and lacking diversity in their features.

We develop BenchPress, the firstML compiler benchmark gener-
ator that can be directed within source code feature representations.
BenchPress synthesizes executable functions by infilling code that
conditions on the program’s left and right context. BenchPress
uses active learning to introduce new benchmarks with unseen
features into the dataset of Grewe’s et al. CPU vs GPU heuristic,
improving its acquired performance by 50%. BenchPress targets
features that has been impossible for other synthesizers to reach. In
3 feature spaces, we outperform human-written code from GitHub,
CLgen, CLSmith and the SRCIROR mutator in targeting the features
of Rodinia benchmarks.

BenchPress steers generation with beam search over a feature-
agnostic languagemodel.We improve this with BenchDirectwhich
utilizes a directed LM that infills programs by jointly observing
source code context and the compiler features that are targeted.
BenchDirect achieves up to 36% better accuracy in targeting the
features of Rodinia benchmarks, it is 1.8× more likely to give an
exact match and it speeds up execution time by up to 72% compared
to BenchPress. Both our models produce code that is difficult to
distinguish from human-written code. We conduct a Turing test
which shows our models’ synthetic benchmarks are labelled as
‘human-written’ as often as human-written code from GitHub.

Our source code is publicly available at https://github.com/fivosts/BenchPress.
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1 INTRODUCTION

Predictive modeling for compiler optimisation heuristics has been
shown to outperform human experts and reduce development time
in previous studies [5, 7, 34, 36]. Predictive models learn such heuris-
tics by training on source-level benchmarks or on static code fea-
tures extracted at the (1) syntax level by traversing their Astract
Syntax Tree (AST) or (2) Intermediate Representation (IR) with the
help of compiler passes, as shown in Figure 1. However, predictive
modeling’s effectiveness is restricted by an acute shortage of bench-
marks, both in quantity and feature diversity [7, 35, 38], degrading
their performance.

There have been some recent generative approaches that lever-
age the rise of deep learning and language modeling to mitigate
this shortage by automatically generating synthetic programs to
enhance existing human-written benchmarks [1, 5, 7]. While they
could provide elegant solutions to improve training data for predic-
tive models, these synthetic benchmarks seem to be short, repetitive
with little new features compared to existing benchmarks [14]. To
generate programs, they either use static programming language
specifications with fuzzing or sample programs from learnt distri-
butions, e.g., machine learning algorithms. Their common charac-
teristic is that they generate random benchmarks that are likely to
conform to the language’s grammar but they are highly unlikely
to synthesize benchmarks that are both human-likely and are not
already included in existing datasets. What is needed is a systematic
method to search for missing programs whose features would be
likely to improve the performance of trained downstream tasks.
We aim to address this with BenchPress, a targeted benchmark
generator, that can generate compiler benchmarks with a desired
set of features. In this work, we focus on generating OpenCL bench-
marks, as predictive models for heterogeneous systems is a rapidly
advancing field and training examples for them are very sparse.

https://github.com/fivosts/BenchPress
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Figure 1: Training pipeline of a predictive model.

We develop BenchPress [12], a BERT-based OpenCL benchmark
generator [9, 32] that targets and synthesizes benchmarks in desired
parts of the feature space. We use active learning to choose parts of
the feature space and beam search to steer BenchPress’s generated
samples towards the requested features. We train BenchPress with
OpenCL code samples that we collect by mining BigQuery [15] and
GitHub directly using its API [13]. We support composite data types
and calls to user-defined functions in our dataset and benchmark
generation. BenchPress is a bidirectional generative model and
learns to generate code in any part of a sequence by jointly consid-
ering left and right context. We achieve this with a new learnt token,
the [HOLE], which hides a sequence from the input, whose length
is unknown to BenchPress during training. BenchPress learns to
fill [HOLE] by iteratively predicting an arbitrary number tokens
that are likely to lead to a compiling function. We further develop
BenchDirect, an extension of BenchPress with a synthesizer con-
ditioned on the features of the complete function. At inference time,
this allows us to fill each [HOLE] with code that is more likely to
bring us closer to the requested features.

BenchPress outperforms CLgen in the task of undirected pro-
gram generation from a fixed input feed, generating 10× more
unique OpenCL kernels that are 7.5× longer on average, with a
compilation rate of 86% compared to CLgen’s 2.33%. BenchPress
strongly outperforms benchmark synthesizers CLgen, CLSmith [1,
39], and human written code from GitHub in reaching close to the
features of Rodinia benchmarks, developed by compiler experts.
The extended synthesizer, by directly filling holes with code that
is useful for reaching the targeted features, makes this process
6% up to 72% faster, 6% up to 36% more accurate and 1.8× more
likely to perfectly reach these features. Finally, BenchPress uses
active learning, specifically query by committee [30], to search
the feature space and find missing features to improve Grewe’s et
al. [16] CPU vs GPU heuristic. Enhancing the heuristic’s dataset
with BenchPress’s benchmarks improves the heuristic’s speedup
relative to the optimal static decision by 50%, increasing it from 4%
to 6%, when the maximum possible speedup for this task is 12%.

In this paper, we present the following contributions:

(1) We are the first to develop a feature-space agnostic, directed
code generator towards desired program features.

(2) We develop an automated approach to rank the feature space
of downstream tasks with active learning.

(3) We enable bidirectional source code generation by inserting
[HOLE] tokens in any part of a sequence.

1.1 New Contributions

The contributions of this study, different from our previous work,
are summarized as follows:

(1) We develop BenchDirect, the first bi-directional language
model for code infilling that is directed in compiler feature
spaces. Compared to BenchPress’s language model’s ran-
dom benchmark generation, BenchDirect jointly conditions
on code context and target features to generate directly candi-
dates that satisfy them. We conduct an extensive evaluation
between BenchPress and BenchDirect and we show the
latter develops up to 36% better accuracy in targeting the fea-
tures of Rodinia benchmarks across 3 feature spaces, while
at the same time it requires up to 72% less time.

(2) We evaluate the human-likeness of BenchPress’s,
BenchDirect’s, CLgen’s and CLSmith’s benchmarks as a
means to measure their quality. We find benchmarks gener-
ated by BenchPress and BenchDirect to be ‘human-written’
labelled as often as code from GitHub from participants in a
Turing test.

2 MOTIVATION

Figure 2 shows a two-dimensional slice of the Grewe’s et al. [16]
feature space: number of computational instructions vs number of
memory instructions. Figure 2 also shows how the OpenCL bench-
marks found in the Rodinia suite map into this plane, represented
as purple diamonds. We find much of this two dimensional space
is uncovered. 54 of the 58 Rodinia examples cluster in the lower
left corner, the rest of the space having only four examples. Any
optimization decision for programs in this area of the space would
not be accurate due to lack of representative examples.

Figure 2: # Memory operations and # computational instruc-

tions for (a) Rodinia benchmarks in purple diamonds and (b)

CLgen’s samples in red dots. Generating samples withmissing

features is vital for predictive modeling’s performance.

CLgen attempted to address this problem by automatically gen-
erating more training examples. However, the generated kernels
lacked feature diversity and provided even poorer coverage of the
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feature space. Figure 2 represents their position in the 2D space as
red dots. Almost all of them are concentrated in a corner covering
a small percentage of the feature space. While CLgen can generate
hundreds of millions of unique kernels, almost all of themwill fail to
compile. As the probability of having at least one illegal token in the
kernel body increases with the number of tokens, only tiny kernels
are valid. In our experiments in Section 5, the longest compiling
CLgen kernel had 8 lines and 102 tokens. Given the small number
of tokens in valid kernels, there is a high degree of repetitiveness in
the generated corpus, not only in terms of features but also in terms
of structure and functionality. As a result, this approach is not well
suited to augmenting the training set with diverse feature bench-
marks. There is a compelling need to generate training points for
uncovered regions of the feature space and we attempt to address
this need with BenchPress. In the following Sections, we discuss
our approach and evaluation of BenchPress, comparing it to the
existing state-of-the art for feature space coverage.

3 APPROACH

We present BenchPress, a deep learning model for directed com-
piler benchmark generation. BenchPress is the first directed syn-
thesizer for compiling functions with features targeted by a user
or a downstream task. BenchPress consists of an undirected lan-
guage model that is trained on source code and a beam search
sampler that steers its generation. Given a downstream task, our
model uses active learning to search desired features and direct
its program generation towards areas of high importance for the
task. We further extend BenchPress’s underlying language model
into a directed synthesizer by encoding compiler features into the
model’s training process. This enables token generation to attend
directly on the targeted features, significantly optimising steerable
synthesis. We name this architecture BenchDirect.

BenchPress and BenchDirect share a BERT-based language
model [9], which we transform into a generative model. There
are two key features in our language model that enable directed,
bi-directional program generation. First, we develop a new token,
namely, the [HOLE], and we train BenchPress to iteratively fill
holes of unknown length at any part of an input sequence by
conditioning it on the left and right context of the [HOLE]. As
an extension to this, BenchDirect’s language model includes a
Transformer-based encoder [37] that incorporates target compiler
features into token classification. This allows tokens to be selected
not only with respect to the input’s source code context, but also
given the compiler features that are targeted.

Figure 3 illustrates an overview of our approach. BenchPress
consists of three main components:

(1) Learning corpus collection and processing.
(2) Directed source code language modeling.
(3) Feature space search and benchmark generation.
We discuss each step in the following four subsections. In our last

subsection, we discuss BenchDirect’s directed language model,
which distinguishes it from our base architecture, BenchPress.
Our codebase and experimental data are publicly available 1 for
researchers to use.

1https://github.com/fivosts/BenchPress

Figure 3: BenchPress’s high-level approach.

3.1 Learning Corpus

Modeling source code accurately requires large amounts of data [24]
similarly to other deep learning tasks. We develop a tool to collect
data from BigQuery’s GitHub dataset [15]. We also use GitHub’s
API [13] and mine directly extra repositories that are not included
in BigQuery.

There are a few innovations in how we pre-process the code
compared to previous works. First, we inline included header files
recursively into source files to resolve type dependencies. Addi-
tionally, we automatically extract custom data types (e.g. struct,
typedef) and utility functions found in the unprocessed corpus
and place them into header files that are accessible throughout
BenchPress’s pipeline. This way, we resolve most type dependen-
cies by retaining the functionality and semantics of the original,
human-written programs. These two steps enable us to increase
significantly the amount of compiling kernels we end up with in
our training dataset. Second, we isolate kernels into single instances
because BenchPress is trained on complete functions. From the
previous steps, the type dependencies of each kernel are known
and we automatically provide them to the compiler, retaining their
compilability. Finally, we compile all kernels with Clang and reject
those that do not compile.

Next, we re-write identifiers by randomly sampling the alphabet,
eliminating spurious naming patterns in the corpus. All kernels
are padded to BenchPress’s sequence length and kernels that are
longer than this are truncated to fit. This helps BenchPress train its
later indices’ positional embeddings more effectively, for which we
have less training information compared to earlier indices. Finally,
we derive a tokenizer by parsing the AST of all source code. We
reserve tokens for all OpenCL keywords and all intrinsic OpenCL
function name identifiers found in the official OpenCL specifica-
tions [31]. We analyze the dataset and tokenize by word the most
common function names and custom data type identifiers that we
have collected. We encode all literals and infrequently used custom
types and functions character by character to avoid exploding the
size of the vocabulary. We define 5 meta tokens: [START], [END],
[PAD], [HOLE], [ENDHOLE]. The derived tokenizer holds in total
2,201 unique tokens.
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3.2 Language Modeling

BenchPress is based on BERT [9], a Transformer-based model
originally designed for natural language modeling. BERT is trained
to predict words that have been randomly hidden by [MASK] tokens.
This way BERT learns fitting words with respect to their position in
a sequence and also the left and right context, i.e., the text sequence
before and after the masked token to be predicted. This type of
training helps BERT learn what words mean within a given context,
improving downstream tasks that rely on that knowledge.

While this is a useful property, it is not enough to turn BERT
into a generative model. We also want to be able to extend a kernel
by inserting an arbitrary number of tokens in arbitrary positions.
We could iteratively add a [MASK] token to get one extra token at a
time, until we have a full statement. This would be limiting. Each
time the new token would be selected based on its probability of
completing forming a plausible kernel. Every intermediate kernel in
the iterative process would have to be plausible or almost plausible,
which is not a general way for augmenting kernels.

Clusters of [MASK] tokens could allow us to insert multiple to-
kens in each iteration. This is still unsatisfactory. The number of
[MASK] tokens in the cluster biases the kind of code that will be
generated: if we ask such a generator to produce five tokens, it
will give us a five token statement that could be expected to close
this gap, not a five token sequence that could be the start of a
much longer statement. We could place the left and right context
to the edges of a sequence and fill intermediate positions with
[MASK] tokens. BenchPress could predict a vocabulary or a stop
token for a [MASK], allowing for arbitrary sequences. We test this
configuration and sample a trained model with a fixed input feed.
BenchPress is unable to learn the [MASK]s’ left and right context
conditionally, when many [MASK]s are in a sequence, which leads
to zero samples to compile or even resemble reasonable code.

What we do instead is to extend BERT’s functionality with a
new pair of learnt tokens, the [HOLE] and the [ENDHOLE]. [HOLE]
follows the same logic with [MASK], however the number of tokens
that have been hidden behind it is unknown to the model during
training. The model only learns to predict the first token of an
arbitrarily long missing sequence. At inference-time, we iteratively
predict the first token of the remaining sequence and re-insert it
just before the [HOLE]. This way BenchPress learns to generate
arbitrarily large code sequences within any part of a sequence.

Figure 4 shows how a [HOLE] is inserted into a function to create
a datapoint. A random starting index and a random length are
selected. The choice of index and length are only restricted by a
potential overlap of the prospective hidden sequence with any of
the other meta token or the maximum hole length that is defined
as a training parameter for the architecture as a percentage of
each function’s length. When the specifications of a hole have been
settled, the hidden sequence is discarded. Only the first token of it is
kept as the target prediction for that hole. A hole can also represent
an empty sequence, i.e. hiding 0 tokens. In this case, the target
prediction during training is [ENDHOLE]. The training instances
are randomly generated on demand, the entire space of possible
instances is too large to be pre-generated. In this paper, we only
insert 1 hole per training instance for BenchPress to learn. Multiple

Figure 4: When a [HOLE] is inserted to a kernel at a random

index, it hides a random number of tokens, unknown to

BenchPress. On this example, BenchPress learns to predict

the first hidden token, p.

holes could be used during training, but this is not needed during
BenchPress’s current benchmark generation task.

3.3 Benchmark Generation

BenchPress’s synthesizer operates as a generative model with the
help of [HOLE] / [ENDHOLE] tokens. It receives an input with 1 or
more [HOLE] tokens and returns a completed benchmark. For each
[HOLE], BenchPress predicts one token that fits in the sequence
at the [HOLE]’s index, with respect to its left and right context. If
the predicted token is not [ENDHOLE], it moves the [HOLE] and
all subsequent tokens one position to the right and inserts the
predicted token to the initial target index. This intermediate kernel
is iteratively provided as an input for the next token prediction and
the process is repeated until BenchPress predicts [ENDHOLE]. This
marks a [HOLE] is complete and the final sample is returned, as
shown in Figure 5.

Figure 5: During sampling, BenchPress receives an input and

predicts iteratively the fitting tokens. BenchPress predicts

[ENDHOLE] to indicate a [HOLE] is complete.

On its own, this process only augments kernels given their ex-
isting left and right context. In that sense, BenchPress’s language
model is undirected with respect to the features that are targeted.
We make BenchPress the first synthesizer to target desired parts
of a feature space with beam search sampling. We generate a set
of kernels from an empty input, we select the ones closer to the
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target features and we insert holes to generate new edited kernels
iteratively.

Given a target feature vector, BenchPress samples a starting,
fixed input feed ‘kernel void [HOLE]’ and yields a collection of
starting benchmarks. We reject benchmarks that do not compile
and for the remaining we measure the Euclidean distance between
their feature vectors and the target features.We select the top-K can-
didates that have the shortest distance from the target and we use
them as inputs for the next generation. To improve diversity among
promoted benchmarks we introduce randomness in the selection
of top-K candidates: Each top-K sample, has a fixed probability
𝑝 = 0.15 to be replaced by another random candidate of its genera-
tion. BenchPress lazily creates multiple different input instances
for each selected candidate by placing a random [HOLE] of random
length in order to synthesize a new sample. BenchPress generates
a successive collection of benchmarks, of which K compiling ones
with the shortest distance from the target again are selected with
p-randomness and used as inputs. This search continues until a
sample achieves a distance of 0 from the target, or until a threshold
of generations (i.e. beam search depth) is exhausted. BenchPress
returns the closest benchmark to the target’s features along with
all beam search’s intermediate benchmarks that cover the model’s
traversal of the feature space starting from the origin and ending
near the target features. For the benchmark synthesis process, we
use categorical sampling with temperature to sample BenchPress’s
probabilities. The sampling temperature, beam search’s width K
and depth are defined as sampling parameters.

In the worst case, BenchPress’s directed program generation
is slow, ranging from a few seconds to one hour, as it typically
requires thousands of random language model inferences. How-
ever, BenchPress is the first program synthesizer that can target a
set of desired program features. BenchDirect speeds up targeting
features significantly as its directed language model requires far
less samples per beam search iteration to produce samples close
to the target features. Often, BenchDirect can target the feature
space within one single inference step from an empty input.

3.4 Feature Space Search

A steerable synthesizer allows the generation of benchmarks with
desired features. However, the automatic selection of those parts
of the feature space that are worth targeting is challenging and
depends on the downstream task.

BenchPress attempts to solve this by searching the feature space
with query by committee [30], a well-known active learning tech-
nique. We implement a committee of (a) 7 NN, (b) 7 k-NN and (c)
7 K-means models. We set their initial state by passively training
on a small portion of the downstream task’s data. We sample the
committee with thousands of random points in the space, we collect
the predicted labels and measure the entropy for each sample. The
entropy shows the level of uncertainty among the committee about
the predicted label of a given point and is defined as:

𝐻 = −
𝑙𝜖𝐿∑︁

(𝑝 (𝑙) ∗ log(𝑝 (𝑙))) (1)

where 𝐿 is the set of all predicted labels and 𝑝 (𝑙) the probabil-
ity of label 𝑙 in the committee’s prediction set for a given input.

The highest entropy point is an important feature vector to target
and BenchPress steers benchmark generation towards it with the
approach explained in 3.3. We collect the labels of generated bench-
marks and we train incrementally the committee with them. Then,
we sample it to find the next highest entropy point. We continue
this process until we saturate the feature space. BenchPress’s com-
mittee is agnostic to the downstream task or the feature space and
its I/O dimensions are hyper-parameters selected with respect to
the task’s feature and prediction dimensions.

3.5 Directed Language Modeling

BenchPress’s synthesizer presented thus far is feature agnostic.
This language model infills source code given the input context left
and right of the [HOLE]. BenchPress is only able to steer program
generation through a costly beam search on the model’s output: we
generate a large number of random code candidates and we feed
those that are closer to the target features back into the model’s in-
put with new holes for further edits. Given BenchPress’s language
model is undirected, it often needs hundreds of thousands of code
candidates to increase the chance of finding a few with the right
features. This is inefficient and unsustainable on complex compiler
tasks.

Instead of randomly trying to fill the space with new benchmarks
to get closer to the target features, a more desirable approach to
target them directly during synthesis is needed. Ideally, this would
help generate a benchmark with the right features in a single infer-
ence. To this end, we develop BenchDirect, a steerable program
generator that extends BenchPress’s undirected language model
into a directed one. Along with the masked source code input,
BenchDirect also encodes its compiler features before masking.
Its classification head selects tokens to fill a [HOLE] by jointly ob-
serving the code context and the encoded features. This leads to
selecting tokens that are likely to generate a kernel that is (a) com-
piling (similarly to BenchPress) but also (b) matching the target
features provided in the input.

BenchDirect’s extended feature encoder is based on Trans-
former [37] and is shown in Figure 6. We encode a vector of nu-
merical compiler features using an embedded layer with positional
encoding followed by a Transformer-Encoder. We reduce the di-
mensions of the Transformer’s output using a Fully Connected
layer to match BERT language model’s hidden state representa-
tion of its input source code. Both hidden states are concatenated
and fed to a Fully Connected layer with GELU [20] activation to
extract correlated features. Finally, a Decoding Fully Connected
layer projects the joint hidden state into the vocabulary space.
The feature encoder’s input consists of 134 positions divided into
three fixed segments. Each represents one feature space used in
our evaluation: (a) 8 positions for Grewe’s et al. features, (b) 56
for Autophase and (c) 70 for InstCount features. BenchDirect can
support multiple spaces and it only needs to be trained once to
direct benchmark synthesis on any of them. To steer generation
in a new feature space, we simply need to extend a new segment
in the Transformer-Encoder’s input and apply fine-tuning using
the new space’s feature extractor to collect data from our training
corpus.
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Figure 6: BenchDirect’s directed language model design.

BenchDirect is trainedwith the same approach described in Sub-
section 3.2. We sample randomly one OpenCL kernel and introduce
a [HOLE] to provide it to the language model’s input. The model
learns to predict the first token of the hidden sequence using cross
categorical entropy loss function. Introducing compiler features in
training is the distinction to this process. When one OpenCL ker-
nel is sampled, its compiler features are also collected. The model
receives a pair of inputs, (𝑠𝑟𝑐𝑖 , 𝑓 𝑣) and one output 𝑡𝑜𝑘𝑒𝑛𝑖 , where 𝑖
is the index at which the [HOLE] is located.

It is important to note that we do not feed the feature vectors of
all three feature spaces to the encoder at the same time. Instead, we
uniformly select one, we set its values to the respective segment
of the encoder’s input and we [PAD] all other positions such that
gradients are not applied. Over training time, the model observes
datapoints from all feature spaces for every kernel. Padding all fea-
ture spaces but one allows the trained model to learn how to direct
synthesis to each one of them independently. Providing vectors
from all spaces as one datapoint would possibly allow the model to
learn correlations between them but this is not useful to us. What
is more, directed synthesis on one of the feature spaces would be
impossible. The model would have been trained to observe all three
feature vectors for one given source code input. This means we
would have to know the mapping function among all feature spaces
to translate a target feature vector to all supported ones for the
encoder’s input. Instead, keeping one feature space per datapoint
leads to the encoder’s weights to be tuned accordingly to perform
accurately on all spaces separately. Parts of the network (e.g. the FC
layers) are jointly trained to optimise all feature spaces encoding.
Other parts, such as the (𝑄,𝐾,𝑉 ) matrices are grouped in vectors,

one for each index separately, and are only trained when their re-
spective positions are not padded. An alternative solution would
be to use many Transformer-Encoders, one per feature space, and
train each separately. During generation, the appropriate Trans-
former would be manually selected given the desired feature space.
Although this is a valid approach, there is no evidence to suggest it
would perform better than one Transformer model large enough to
learn all segments separately.

During sampling, BenchDirect receives a source code input and
the target features as an input. Given the code context and the
[HOLE] position, the model will attempt to select those tokens that
will produce a compiling kernel with features as close as possible
to the target in that respective feature space. At its best, we hope
BenchDirect can receive an empty code input and provide the
target benchmark at a single inference step. At the very least, the
beam search sampler will go through fewer iterations and fewer
inferences per generation compared to BenchPress.

4 EXPERIMENTAL SETUP

We describe the configurations used in training BenchPress, and
the parameters used in evaluation, namely (1) Feature Spaces - we
use three different representations of program features, (2) Target
Benchmarks - We use Rodinia benchmarks [4] and their features as
the target for synthesis by BenchPress, (3) Comparison to SOTA -
we compare BenchPresswith code synthesizers and humanwritten
code in improving Grewe’s et al. heuristic model.

4.1 Platforms

We train BenchPress and conduct all our experiments on two 64-bit
systems each having one Intel Xeon E5-2620 16-core CPU, 2x Nvidia
GeForce GTX 1080 GPU and 32 Gigabytes of RAM. We use Ubuntu
18.04, PyTorch 1.9.1 [27], CUDA version 11.4 and Nvidia driver
version 510.47.03. We use Clang-10 as BenchPress’s compiler and
LLVM-10 to compile and execute InstCount and Autophase [18]
extracting tools. For compatibility reasons, we are required to use
Clang LibTooling from LLVM-6 to execute Grewe’s et al. [16] feature
extractor.

4.2 Language Modeling for source code

We collect OpenCL code from GitHub and split it into single func-
tion instances. We ensure no kernels that come from benchmarks
suites used in the evaluation are included in our corpus. We pre-
process text, re-write variables and reject OpenCL kernels that do
not compile. In total we mine 63,918 OpenCL kernels across 12,860
GitHub repositories and we successfully compile 19,637 of them
(31% compilation rate).

We train BenchPress on our OpenCL Corpus for 10M steps
with a batch size of 32. For BenchPress’s BERT model parameters,
we select 2 hidden layers, 12 attention heads. We set intermediate
size, hidden size and max position embeddings to 768. We set the
maximum length of holes to be 90% of a kernel’s token length, i.e. a
hole can hide almost all tokens of a training instance. We optimize
the model using Adam optimizer with a learning rate that reaches a
maximum of 45𝑥10−6 after 20,000 warmup steps and decays linearly
over the remaining training steps. We train BenchPress’s language
model to a final loss value of 0.28.
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4.3 Feature Spaces

Compiler predictive models use static code features to represent
programs and learn optimisation heuristics. A vector of indepen-
dent characteristics represent a single program. Each of them are
typically an integer or float value. Features are extracted at the
Syntax level by traversing the AST or at the IR level using the com-
piler’s middle end (e.g. LLVM-IR). A feature space is the collection
of all possible program feature vectors.

BenchPress is a generative model that can be steered to gen-
erate samples for a desired part of the feature space. We evaluate
BenchPress on three source feature representations we find across
the literature, (a) Syntax-level Grewe’s et al. features [16], (b) IR-
level LLVM-InstCount [23] and (c) IR-level Autophase [18].

Grewe’s et al. features are extracted with Clang’s LibTooling
and used to train their predictive model on the CPU vs GPU task
for OpenCL kernels. This feature space holds 8 dimensions. 4 di-
mensions describe the number of 1) computational, 2) relational, 3)
atomic and 4) memory access instructions. The feature space also
counts the different type of memory instructions, local memory or
coalesced. Finally, the computational to memory and coalesced to
memory ratios are defined.

InstCount is a standard pass provided by LLVM-IR framework
and used in Compiler Gym by Cummins et al. [6]. InstCount holds
70 dimensions: 67 dimensions each counting all 67 LLVM-IR in-
struction types and total number of 1) instructions, 2) basic blocks
and 3) functions. Autophase by Huang et al. [18] holds 56 dimen-
sions. While many of the features used in Autophase are shared
with InstCount, they introduce new ones such as number of input
arguments to PHI Nodes or total number of memory instructions.
On the other hand, they do not include the count of some LLVM
instructions that are not considered to contribute to a program’s
representation, e.g. CatchPad instruction.

4.4 Analysis of BenchPress and CLgen language

models

CLgen [5] is the current state of the art in OpenCL benchmark gen-
eration. Its synthetic benchmarks improve the accuracy of Grewe’s
et al. predictive model [16] by 1.27×. However, Goens et al. [14]
perform a case study and show evidence that CLgen’s synthetic
benchmarks do not improve the quality of training data and, con-
sequently, performance of predictive models. They show that a
predictive model in fact performs worse with synthetic benchmarks
as opposed to human written benchmarks or code from GitHub.

This study motivates us to perform an analysis of BenchPress’s
language model, BERT, with CLgen in the task of undirected pro-
gram generation. In this first experiment, we reproduce CLgen
using the authors’ artifacts and we sample it with a fixed input
‘kernel void’ to collect a dataset of unique OpenCL kernels. We
use BenchPress on the same generative task and sample the model
with the same fixed input ‘kernel void [HOLE]’ to obtain another
dataset of unique benchmarks. In this experiment we focus on the
language model’s inference performance. We compare both gener-
ative models on their throughput, their ability to create compiling
code, feature distribution and code size. In this experiment, we do
not direct program generation. BenchPress generates compiling
kernels in a single inference step.

4.5 Targeted Benchmark Generation

Next, we evaluate BenchPress’s ability to steer towards desired
program features. We use well-established compiler benchmarks
as our reference and target their features within this space. These
benchmarks usually perform intensive operations, such as matrix
multiplications or FFT analysis, they contain hundreds of computa-
tional and memory instructions and are specifically fine-tuned by
experts to exercise compilers from different angles. As a result, we
believe features in these benchmarks provide a good target to assess
performance of BenchPress’s ability to target complex features.

We choose target benchmarks within the Rodinia suite [3, 4]
as it is widely used in the literature [5, 7]. Similar to the train-
ing corpus, we collect the suite’s source files, we inline header
files and dependent OpenCL libraries into them, we split kernels
into single source files and reject those that do not compile. In
total, we collect 61 target Rodinia benchmarks out of which 58
compile. For the remaining benchmarks, we collect their features
using the feature extractors for Grewe’s et al., InstCount and Au-
tophase feature spaces [16, 18, 23]. We target the feature vectors of
these benchmarks and request BenchPress to generate at least one
matching benchmark for each. We end up with three collective syn-
thetic benchmark datasets, one for each feature space, that contain
code with features matching Rodinia benchmarks. For each Ro-
dinia benchmark’s target feature vector, we measure the minimum
Euclidean distance to it achieved between BenchPress, code from
GitHub, CLgen and CLSmith [1, 39]. For GitHub’s and CLSmith’s
kernels, we use SRCIROR [19] to apply code mutations exhaustively
with beam search.

To make our experiment more intuitive we use two datasets for
GitHub: a) GitHub consisting of all OpenCL kernels we collected
and b) GitHub-768, a proper subset of GitHubwhich contains only
the kernels that do not exceed BenchPress’s sequence length of
768 tokens. Since BenchPress benchmarks’ size are restricted to
the architecture’s sequence length, we feel it is important to make
this distinction in order to present a view of BenchPress’s actual
performance on features thatmay be unreachablewithin the current
sequence length. For example, it may be impossible to generate
2,000 computational instructions within 768 tokens. For such cases,
we believe GitHub-768 with its equally restricted sequence length
would allow for a fairer comparison.

For all three feature spaces, we weed out the Rodinia benchmarks
that have an exact matching sample (i.e. a Euclidean distance of
0) in GitHub-768. Since we already have matching samples for
them, we do not need to target them with BenchPress or any other
generative model. However, we do not skip benchmarks whose
features exist only in GitHub’s full dataset as we wanted to explore
the feasibility of using BenchPress to generate a sample with the
same features but smaller sequence length. Applying this restriction
we end up with 22 Rodinia benchmarks for Grewe’s et al., 52 for
InstCount and 36 for Autophase feature spaces.

We sample BenchPress for a maximum of 50 beam search itera-
tions unless a benchmark matching the target features is produced.
We set a workload size of 2048 samples per iteration. Among those
of them that compile, our beam search sampler propagates to the
next generation the closest 32 candidates, placing new holes into
them.
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4.6 Active Learning for Feature Selection

BenchPress’s steerable generation is vital for searching the feature
space while also finding useful features to target with active learn-
ing. In this experiment, we evaluate BenchPress in the downstream
task of training the predictive model proposed by Grewe et al. [16],
a well-tested problem used by many baseline models.

Grewe et al. train a decision tree model to predict the optimal
device to execute a benchmark, choosing between a CPU and a GPU.
They measure their model’s performance as speedup achieved with
using the predicted device for execution versus statically executing
all benchmarks on the GPU. To train the predictive model, they use
OpenCL benchmarks from 7 well-known benchmarks suites [5, 16].
In this experiment, we reproduce Grewe’s et al. heuristic using their
artifact andwe also retrain it with datasets enriched with executable
benchmarks from BenchPress using active learning and passive
learning (i.e. targeting random parts of the feature space instead
of searching it), CLgen and GitHub. We measure the speedup over
static mapping for each of them.

To collect our evaluated datasets, we execute OpenCL bench-
marks with CLDrive [5] by Cummins et al. CLDrive automatically
generates inputs and drives kernels to the hardware. It measures
the execution time per device across thousands of runs and it re-
jects kernels that produce runtime errors, do not modify any of
the inputs (no output) or modify them differently for each run (not
deterministic). For (a) the 7 human-written benchmarks suites, (b)
BenchPress, (c) CLgen and (d) GitHub, we execute their kernel on
CLDrive using a range of different local and global size configura-
tions. We label each instance with the fastest measured device (the
CPU or the GPU), in the same way Cummins et al. [5] and Grewe
et al. [16] performed their evaluation.

4.7 Directed Language Modeling

BenchPress develops strong performance compared to state of
the art program synthesizers and its benchmarks outperform even
human-written benchmarks from GitHub in two tasks, (a) targeting
the features of Rodinia benchmarks and (b) improving the accuracy
of a compiler heuristic model. However, its undirected language
model requires up to hundreds of thousands of inferences for its
beam search sampler to minimize its samples’ distance from the
target features. This process can be inefficient, which we strive to
address with a directed language model, namely BenchDirect.

We repeat the experiment of Section 4.5 to evaluate
BenchDirect’s accuracy and execution time in targeting the fea-
tures of Rodinia benchmarks compared to BenchPress. We target
the features of Rodinia benchmarks in all three feature spaces for a
range of different workload sizes: 32, 64, 128, 256, 512, 1024 and 2048.
A large workload size leads to a significant time overhead but is
required to ensure high accuracy for BenchPress’s undirected lan-
guage model. This may not be the case for BenchDirect’s directed
synthesizer, speeding up directed generation without compensating
on its accuracy. In this experiment, we explore how this parameter
affects accuracy and total execution time for both models.

We re-train BenchPress and BenchDirect for 8M steps to a final
loss of 0.14 using the same BERT hyper-parameters described in
Section 4.2, except for their max position embeddings which we set
to 512 instead of 768 to reduce training time. For BenchDirect’s

Transformer-Encoder, we set an embedding size of 512, 4 attention
heads, 2 hidden layers and we set its Fully Connected layers to
1024 features. During sampling, we set the threshold of maximum
beam search iterations to 5. Reducing the models’ sequence length
to 512 and the sampler’s iteration threshold to 6 leads to a perfor-
mance reduction compared to BenchPress’s accuracy in Section 4.5.
However, it saves valuable compute time. Both BenchPress and
BenchDirect are restricted by this reduction, therefore the validity
of this comparative study’s results is not hurt.

4.8 Human Likeness of Generated Code

A great challenge for neural synthesizers is to produce programs
that are human likely, that is following basic structural and syn-
tactical form that makes them easy for humans to read and un-
derstand. The human likeness of a synthetic program reflects its
quality and efficiency in the functionality it serves. To this end,
we conduct a case study to measure the likeness of BenchPress’s
generated benchmarks to human-written code. We devise a double
blind Turing test in which we show to human participants random
samples from BenchPress, BenchDirect, CLgen, CLSmith and also
human-written code from GitHub. They are shown randomly se-
lected benchmarks from the stored datasets and are asked to label
them as human or AI-written. We release our Turing test publicly
available in the form of a web application2.

5 RESULTS AND ANALYSIS

In this section, we show our experiments’ results and compare
BenchPresswith state of the art techniques in OpenCL benchmark
synthesis. We present case studies of (a) BenchPress’s throughput
as a generative model compared to CLgen, (b) its ability to steer
benchmark generation towards desired features and (c) its perfor-
mance in searching the feature space to enhance a downstream
task’s performance.

5.1 Analysis of BenchPress and CLgen language
models

We perform an analysis of BenchPress and CLgen as language mod-
els and compare them in generating a collection of benchmarks
from a fixed input feed, ‘kernel void [HOLE]’ and ‘kernel
void’ respectively. We compare the two approaches measuring
(a) the generative models’ throughput and (b) the quality of their
generated benchmarks in terms of code size and features. In this
experiment, we do not use any directed search or iterative ap-
proach for BenchPress’s generation. We perform this evaluation
to measure how BERT, BenchPress’s underlying language model,
compares with CLgen as a generative model. Table 1 presents the
aggregate measurements for the generated benchmarks using both
approaches.

Compilation rate and code quality. BenchPress generates over
10× more unique compiling benchmarks than CLgen. This result is
observed despite BenchPress generating 8× fewer unique bench-
marks than CLgen. The compilation rate with BenchPress is 86%
while CLgen has an exceedingly small rate of 2.3%. BenchPress’s

2https://humanorai.co.uk
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# unique
benchmarks

# compiling
benchmarks

compilation
rate

max
tokens

max inst
(LLVM-IR)

time per
sample (ms)

BenchPress 190,460 142,607 86% 750 161 162
CLgen 1,564,011 13,035 2.33% 102 32 103

Table 1: Throughput comparison between BenchPress and CLgen on generated OpenCL benchmarks when BenchPress does not

use feature-directed program generation.

Figure 7: Probability distribution of (a) token length and (b)

LLVM-IR Instruction count among BenchPress’s and CLgen’s
generated benchmarks. BenchPress’s benchmarks presented

here are generated at a single inference step without itera-

tively directing program synthesis.

largest sample is 750 tokens compiling to 161 LLVM-IR instruc-
tions. This is a 7.5× and 5× increase in number of tokens and
number of LLVM-IR instructions compared to CLgen’s largest ker-
nel. The only drawback of BenchPress compared to CLgen is that
it is considerably slower in generating candidates. This is because
the transformer-based architecture in BenchPress is significantly
larger in number of parameters than CLgen’s LSTM. Additionally,
BenchPress tends to generate longer kernels than CLgen, necessi-
tating more inference steps and longer generation time.

In Figures 7a and 7b, we show the frequency distribution of
the number of tokens and number of LLVM-IR instructions for
compiling kernels for both datasets. To visualize our results better,
we focus on synthesized kernels with token lengths ≤ 100 and
instructions lengths ≤ 25 where the vast majority of benchmarks
are found. Most of BenchPress’s benchmarks are found to have
20 to 80 tokens and 3 to 16 LLVM-IR instructions. The majority of

CLgen’s benchmarks are found to have 5 to 45 tokens and only up
to 4 LLVM-IR instructions. 94% of CLgen’s generated benchmarks
have only 1 instruction when compiled to LLVM-IR. We analyze
the dataset to explain this phenomenon and find CLgen generates
a lot of comments, repeated dead statements and awkward non-
human-like code such as multiple semi-colons. These results agree
with the case study by Goens et al. [14] that shows the AST depth
distribution of CLgen’s code is significantly narrower compared to
code from GitHub or standard benchmarks.

Feature space coverage. To further enhance our comparison, we
perform an analysis on the feature space coverage of BenchPress’s
and CLgen’s synthesized programs in all three feature spaces. Fea-
ture coverage is the most critical metric when evaluating the effec-
tiveness of a benchmark synthesizer for predictive modeling. We
use Principal Component Analysis (PCA-2) to represent the feature
spaces in an easy to visualize 2-dimensional space. In Figures 8a, 8b
and 8c we show the extent of feature space covered by candidates
in the two approaches. CLgen’s samples are clustered around the
origin, while there is one outlier for Autophase and two for Grewe’s
et al. and InstCount features. Candidates generated by BenchPress
are more scattered achieving a much wider coverage of the feature
space.

5.2 Targeted Benchmark Generation

We use beam search to generate samples that target desired parts
of the feature space. We compare BenchPress with human-written
benchmarks from GitHub and synthetic benchmarks from CLgen
and CLSmith in targeting the features of Rodinia benchmarks on
three feature spaces. We use SRCIROR code mutator with beam
search to collect GitHub and CLSmith benchmarks with closer fea-
tures. For each target benchmark, we gather one OpenCL kernel
per evaluated dataset whose features have the minimum available
Euclidean distance from the target features. Figures 9a, 9b and 9c
show the relative proximity of each benchmark to the target. This
proximity is the complement of the relative distance of the two
kernels, i.e, 1 minus the distance between the two kernels in the
feature space relative to the distance of the Rodinia kernel from the
axes origin. This allows us to express the quality of the match with
an intuitive 0% to 100% scale: 100% means the two kernels have the
same features, 0% means the best kernel is as close to the target as
an empty kernel. We mark perfect matches with a white asterisk
(*).

Performance on syntactic features. OnGrewe’s et al. feature space,
BenchPress generates kernels that are the closest ones in features
for all 22 Rodinia Benchmarks compared to CLgen and CLSmith,
and 20 out of 22 compared to GitHub and GitHub-768. BenchPress
synthesizes an exact match (100% relative proximity) for 14 target
benchmarks.
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Figure 8: PCA-2 representation of feature space coverage of BenchPress and CLgen for (a) Grewe’s et al., (b) InstCount and (c)

Autophase feature spaces. In this experiment, BenchPress’s generation is undirected and no iterative space search is performed.

We pick out and discuss a few examples from our results. The
absolute distance achieved for ‘nw-1’ and ‘ellipse_opt’, is 1.0. For
both targets, almost all features match except for one missing in-
struction (coalesced mem access and atomic inst respectively).
For ‘hotspot’ GitHub and BenchPress produce a candidate kernel
with exact matching features. However, BenchPress generates the
matching candidate kernel in 421 tokens, unlike GitHub’s closest
benchmark that has 798 tokens. For the two target benchmarks that
BenchPress’s candidates were not closest to, we found only GitHub
contains better samples for ‘com_dwt-3’ and and ‘gpu-1’, while
BenchPress does not. We find both benchmarks to be fairly large
(901 and 5,200 tokens respectively) and BenchPress cannot reach
these features within 768 tokens. For the same reason, GitHub-768,
CLgen and CLSmith does worse than BenchPress on these targets.

Performance on LLVM IR features. Autophase and InstCount
features are extracted from the LLVM-IR of a program that has
been compiled with -O1 flag to apply basic optimisations such
as dead code elimination. BenchPress occasionally generates re-
peating operations that a compiler will remove or numerical op-
erations that may be reduced to simple assignments. Owing to
these optimisations, we find targeting benchmarks on these two
feature spaces is more challenging than Grewe’s et al. syntax-level
features. With InstCount features, BenchPress generates candi-
dates whose features completely match 2 out of the 52 Rodinia
benchmarks. Among the remaining 50, BenchPress outperforms
CLgen, CLSmith, GitHub and GitHub-768 for all target benchmarks,
achieving higher proximity. SRCIROR significantly improves GitHub
leading to GitHub+SRCIROR to achieve better proximity for 18 out
of 52 Rodinia benchmarks compared to BenchPress. On Autophase
features, BenchPress generates candidates matching the same 2 tar-
get benchmarks, while outperforming CLgen, CLSmith and GitHub
on 30 out of 36 Rodinia benchmarks in total. GitHub+SRCIROR per-
forms better than BenchPress for 8 out of 36 target benchmarks
and produces an exact match for ‘hotspotKernel’.

We previously explain the importance of having diverse features
in compiler benchmarks and we show, in Figure 2, how sparse Ro-
dinia benchmarks are on Grewe’s et al. reduced feature space and
how CLgen fails to provide any additional features. Now we intro-
duce into this 2-dimensional space all BenchPress’s kernels that are

generated while performing directed space search to target Rodinia
benchmarks and we present them in Figure 10. BenchPress densely
populates the space around the target benchmarks that are clus-
tered around the lower left corner. We find BenchPress’s samples
progressively converge to the target benchmark features with suc-
cessive generations. For example, BenchPress targets ‘com_dwt-3’
at 385 computational and 137 memory instructions, starting from
the axes origin and attempting to reach its features from different
directions. One of the directions prevail but does not manage to
exactly reach the target. The same happens for the top right point,
‘gpu-1’. BenchPress’s samples get closer developing a straight line
from the origin to 1,000 computational and 100 memory instruc-
tions. At this point BenchPress is restricted by its sequence length
and cannot augment further its samples. This is depicted by its
attempt to reduce the distance by swapping the two instruction
types within the same token length, forming a perpendicular line
with a negative slope. We argue the area of Grewe’s et al. feature
space that BenchPress can cover within 768 tokens to be the area
of the triangle formed by the intersections of the axes with the
extension of the negative slope line developed by BenchPress’s
samples.

Summary - BenchPress vs GitHub vs CLgen vs CLSmith. 6 of the
targeted Rodinia benchmarks exceed BenchPress’s maximum se-
quence length of 768 tokens. In LLVM-IR feature spaces, care must
be taken to generate code that will not be removed by compiler
optimisations. This is a difficult challenge for source code gener-
ative models. However, our results demonstrate that BenchPress
can generate OpenCL kernels that approach target human-written
benchmarks compared to GitHub code and CLgen candidates. Our
experiments also show BenchPress is dramatically better in all
cases than CLgen, the current state of the art in OpenCL synthetic
benchmark generation. We further elaborate on BenchPress’s per-
formance in the next subsections.

5.3 Active Learning for Feature Selection

We combine BenchPress’s ability to generate benchmarks targeting
desired features with active learning in order to generate bench-
marks that improve the training of the Grewe et al. heuristic. We
evaluate this against passive training with CLgen, GitHub code, and
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Figure 9: Relative proximity to each Rodinia benchmark of the candidate kernel with the closest features. We report the best

match for seven datasets (BenchPress’s, CLgen’s, GitHub’s and GitHub-768’s datasets also combined with exhaustive mutations

with SRCIROR) over three feature spaces ((a) Grewe’s et al., (b) InstCount and (c) Autophase). Relative proximity is 1 minus the

distance of the two kernels in the feature space relative to the distance of the Rodinia benchmark from the axes origin. 100%

means an exact match in features and is highlighted with a white asterisk (*). A score towards 0% indicates the closest match is

closer to the axes origin than the benchmark, i.e., a very small or empty kernel.
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Figure 10: # Memory operations and # computational instruc-

tions for (a) Rodinia benchmarks in purple diamonds, (b)

CLgen’s samples in red dots and BenchPress’s benchmarks in

green crosses after performing directed search for all Ro-

dinia benchmarks.

Speedup % Precision Recall Specificity
Benchmarks +4% 0.81 0.86 0.61
BenchPress-AL +6% 0.84 0.86 0.64
BenchPress-P +1% 0.84 0.85 0.48
CLgen -1% 0.52 0.86 0.43
GitHub +1% 0.85 0.83 0.61

Table 2: Grewe et al. heuristic model’s performance, preci-

sion, recall, and specificity when trained on each technique.

Speedup is the geometrical mean of speedups over all bench-

marks relative to the optimal static decision, i.e. running on

the GPU. Precision, recall, and specificity treat GPU labels as

positive and CPU labels as negative.

BenchPresswith randomly selected target features. All approaches
augment the same baseline training set that is taken from [5], con-
taining 7 benchmark suites3. Table 2 shows the effect of each ap-
proach on the predictive power of the heuristic. Training only on
human written benchmarks improves the heuristic’s performance
by 4%, as shown in Table 2’s first row. To understand the maxi-
mum achievable improvement in the heuristic, we compute the
best speedup (= 12%) that is achieved if the model chooses the
optimal device as opposed to always picking the GPU. For 71% of
the benchmarks, GPU is the optimal device, so no speedup improve-
ment is possible. For the remaining 29% benchmarks, predicting
the ‘CPU’ label correctly with Grewe et al. will result in a speedup
improvement.

BenchPress using active learning (BenchPress-AL) clearly out-
performs all other approaches in terms of average speedup, improv-
ing it by 6%. When trained on BenchPress with passive/random
feature selection (BenchPress-P), the speedup achieved is only
1%. To our surprise, the same speedup is achieved with GitHub,
3The benchmarks have been updated with a wider range of global and local sizes.

Figure 11: BenchPress’s performance enhancement of Grewe

et al. heuristic model when using active learning compared

to passively targeting random parts of the feature space over

the course of 10 sampling epochs.

which is worse compared with training only on the original bench-
mark suites. We further analyze the dataset collected from GitHub
code and we find it to be imbalanced with 90% of its training in-
stances are labelled as ‘GPU’. This leads the model having a higher
precision of 0.85, i.e. predicting correctly that a kernel should ex-
ecute on the GPU, but falling short when it comes to correctly
predicting the ‘CPU’ label. Training the heuristic with CLgen ac-
tually leads to a slowdown: it is 1% slower to execute kernels on
the predicted devices compared to statically executing everything
on the GPU, the baseline device. We analyze CLgen’s dataset and
observe the opposite pattern found in GitHub’s dataset. 63% of its
training data execute faster on the CPU than on the GPU. This is
a direct consequence of CLgen generating small benchmarks that
are poor in features, as the CPU may be slower than the GPU but
the large overhead of transferring data to the GPU makes the CPU
a better choice for small workloads. CLgen containing too many
CPU-labeled kernel explains the heuristic’s low precision and speci-
ficity, as it becomes biased to select the CPU very often leading to
a slowdown.

Our main motivation behind using active learning is that it gives
BenchPress the ability to target directly those parts of the feature
space that will maximize a downstream task’s performance. To
assess the active learner’s performance, we compare the Grewe
et al. heuristic’s speedup when trained on BenchPress’s bench-
marks that target areas of the feature space selected by the active
learner versus benchmarks that target random features. In both
cases, we execute BenchPress for the same amount of time, 10
sampling epochs (i.e., performing steered generation for 10 target
feature vectors). In Figure 11, we show the speedup achieved by
the heuristic when trained on the data collected at that step. Using
active learning to target features, BenchPress’s dataset improves
the heuristic’s speedup by 50% after 5 sampling steps, from 4% to
6%. Targeting random features never leads to a speedup higher than
1%. BenchPress can still develop the same speedup by targeting
random features if infinite amount of time was available. Our ac-
tive learner ensures that missing features are going to be quickly
targeted, improving the state of the art within 5 sampling epochs.
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Figure 12: Pareto fronts of the average relative proximity versus total inferences in targeting Rodinia benchmarks over three

feature spaces ((a) Grewe’s et al., (b) InstCount and (c) Autophase). Higher relative proximity and fewer inferences are better,

therefore optimal points, i.e., Pareto-dominant, are those towards the top left. We annotate the workload size configuration per

Pareto point. On the right, we show BenchDirect’s acquired speedup and accuracy gain over BenchPress for the same workload

size setting.

5.4 Directed Language Modeling

We target the features of Rodinia benchmarks using BenchPress
and BenchDirect. Both models use beam search over their synthe-
sizer to minimize their samples’ distance from the target features.
At the end of each search, we select the generated kernel whose
features have the minimum Euclidean distance from the target
benchmark. We perform this experiment for multiple beam search
candidate sizes: 32, 64, 128, 256, 512, 1024 and 2048. On the left
side of Figures 12a, 12b and 12c we show the Pareto fronts of the
average relative proximity achieved over all Rodinia benchmarks

versus the total amount of inferences. Relative proximity is de-
fined in Section 5.2 as a percentage of how close a feature vector
is to the target features relatively to the axis origins. Inferences
are calculated as the number of beam search iterations to target
all benchmarks multiplied by the workload size. Each datapoint is
annotated with its workload size configuration. On the right side
of Figures 12a, 12b and 12c, we show BenchDirect’s improvement
in accuracy and execution time compared to BenchPress, for each
workload size setting.
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Figure 13: Relative proximity to each Rodinia benchmark of the candidate kernel with the closest features. We show the best

match for BenchDirect and BenchPress. Relative proximity is defined in figure 9.

BenchDirect outperforms BenchPress in average relative prox-
imity and total inferences for all workload size configurations,
across all three feature spaces. Taking the average proximity and
the execution time as a design space, the datapoints that are op-
timal with respect to these two metrics belong exclusively to
BenchDirect, while there are no configurations for BenchPress
that optimise either metric compared to the former. The effect
BenchDirect’s directed language model has in targeting fea-
tures is especially highlighted when the workload size is small.
BenchDirect’s synthesizer conditions directly on the target fea-
tures and provides, in very few attempts, candidates that match
or are very close to them. This means a dramatic reduction in the
amount of benchmarks per beam search does not drastically hamper
the model’s accuracy. The same is not true for BenchPress. While
BenchDirect offers an average speedup of 10.2% and an improve-
ment in average relative proximity of 10.1% for workloads greater
or equal to 512, the speedup reaches up to 36% in all three feature

spaces and the accuracy gain up to 72% on InstCount features for
smaller workloads. This indicates BenchDirect remains consistent
in the amount of iterations needed to achieve high accuracy, while
BenchPress suffers in both areas.

Both models achieve a peak accuracy when they use a work-
load size of 2048. This is expected as generating more candidates
increases the probability of getting closer to the target features.
Using this configuration on both models, we show in Figures 13a,
13b and 13c the best relative proximity achieved for each target
benchmark in all three feature spaces. Similarly to Figures 9a, 9b
and 9c, candidates whose euclidean distance from the target is 0
(i.e., perfect match feature-wise) are marked with a white asterisk
(*). For a selection of Rodinia target benchmarks, we show how the
minimum distance from the target is reduced over the course of 6
beam search iterations for both models in Figure 14.

BenchDirect generates 1.8× more candidates that match ex-
actly the target features compared to BenchPress. Specifically, it
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Figure 14: A qualitative comparison between BenchDirect and BenchPress for backprop-2, gpu-4 and particle_naive Rodinia
benchmarks in all three feature spaces. We show for both language models the minimum distance achieved (y-axis) from the

target over the course of six beam search iterations (x-axis).

matches 21 targets on Grewe’s et al. features, 14 on InstCount and
10 targets on Autophase, compared to BenchPress’s 17, 3 and 5
exact matches respectively. Overall, BenchDirect gets closer to the
target compared to BenchPress. Its samples are closer, or as close,
for 45 out of 58 Rodinia targets on Grewe’s et al. features, 47 out
of 52 on InstCount and 49 out of 52 on Autophase. BenchPress
provides better candidates for 13, 5 and 3 targets on Grewe’s et
al., InstCount and Autophase features respectively. Even though it
is expected for BenchDirect to miss some target features due to
the experiment’s randomness, we pick out a few such examples to
discuss why this happens.

The largest performance gap in favour of BenchPress is ob-
served on ellipse and ellipse_opt on InstCount features. These
two benchmarks are very large, containing multiple thousands

of instructions, therefore they are difficult kernels to target. We
examine both models’ generated samples over all 6 beam search
iterations. In both cases, we find BenchDirect’s closest candidate
on the first iteration to be 8% closer to the target compared to
BenchPress’s. After measuring the distance distribution from the
target for both models’ samples, we find BenchDirect is 93% more
likely to generate a sample whose distance is lower compared to
BenchPress on the first beam search iteration. BenchDirect seems
to succeed in these two target benchmarks indeed. However, at ev-
ery inference step BenchDirect tries to match the target features
in a single [HOLE] infill. As these two kernels are very large, this
is a challenging task leading to most of its produced candidates
to have syntactic errors, leaving it with only a few benchmarks
that compile. Even though its first iteration’s samples are closer



PACT ’22, October 10–12, 2012, Chicago,IL Foivos Tsimpourlas, Pavlos Petoumenos, Min Xu, Chris Cummins, Kim Hazelwood, Ajitha Rajan, and Hugh Leather

Score % #Human #Total
GitHub 51% 139 270
BenchPress 53% 55 103
BenchDirect 49% 60 122
CLgen 38% 36 95
CLSmith 29% 26 89

Table 3: Score of ‘human-likeness’ expressed as the percent-

age of code examples from each dataset that were tagged as

‘human-written’ by users

compared to BenchPress, all successive iterations are becoming
increasingly difficult for BenchDirect to produce a compiling ker-
nel which also reduces the minimum distance. For that reason,
BenchPress’s random and cautious steps lead to benchmarks that
are eventually closer. We notice this pattern to happen in all tar-
gets where BenchPress produced a better candidate. For these
targets, it is likely that if we break down the difficulty into smaller
steps by using intermediate feature vectors, this would have helped
BenchDirect to get to the target features gradually but more accu-
rately.

5.5 Human Likeness of Code

We conduct an empirical evaluation on BenchPress, BenchDirect,
CLgen and CLSmith to measure the human-likeness of their sam-
ples by devising a Turing test in the form of a web application.
Human-likeness is a desirable property for programs synthesized
by generative models, as it indicates samples are likely to assimilate
the functionality of human-written benchmarks. Each participant
is shown a benchmark picked randomly from one of the 5 following
datasets, (a) BenchPress, (b) BenchDirect, (c) CLgen, (d) CLSmith,
and (e) GitHub. They are then asked to label the benchmark as
written by a human or an AI. During this test, we show only the
benchmarks that were selected in experiments 5.2 and 5.4, i.e., the
closest samples per dataset to Rodinia for all 3 feature spaces. This
results in 168 samples per presented dataset.

In total, we collect data from 77 participants that declare famil-
iarity with programming. Table 3 shows how often users tag a
test from each dataset as ‘human-written’. We notice that human-
written code from GitHub is classified as ‘AI-written’ by users in
49% of the tests. We believe this to be due to two reasons. First, the
dataset from GitHub contains large OpenCL kernels that contain
long and unnatural expressions or have had their loops manually
unrolled for optimisation reasons, making them hundreds of lines
long. Such kernels are most of the times labelled as ‘AI-written’.
Second, a participant may be suspicious of statements that do not
look simple enough to be written by a human, therefore tending to
select the ‘AI-written’ label more often.

Participants label samples from BenchPress as ‘human-written’
in 53% of its total tests and 49% of BenchDirect’s total tests. While
both scores are similar, it is likely that BenchDirect produces state-
ments that are not likely written by a human slightly more often
than BenchPress. This is because it tends to generate longer se-
quences than BenchPress when trying to reach to outliers of the
feature space in a single inference step. CLgen’s samples may look
human likely but most of them are short, no longer than 3-4 lines.

Often they contain no workloads or loops and are accompanied by
unused arguments. This is the reason it scores lower at 38%. Finally,
CLSmith is the most obvious case of unstructured and complicated
code, being classified as ‘human-written’ only 29%. This fuzzer gen-
erates kernels by producing random expressions that conform to
OpenCL’s grammar, leading to random code whose functionality is
not clear.

6 CONCLUSION

Predictive models for compilers have been shown to outperform
compiler experts but they are restricted by the amount and quality
of training data they are exposed to. What is needed is an approach
that can synthesize benchmarks and enhance datasets with missing
features. In this paper we propose BenchPress, a powerful code
generator that uses active learning to search the feature space and
steers generation towards desired features. BenchPress generates
10× more and 7.5× larger undirected benchmarks with 37× greater
compilation rate than CLgen - a state of the art compiler bench-
mark generator - from a fixed input feed. BenchPress outperforms
CLgen, CLSmith, code from GitHub and applied mutations with
SRCIROR in generating OpenCL kernels that target the features
of Rodinia benchmarks developed by human experts. BenchPress
applies active learning to enhance Grewe’s et al. dataset with bench-
marks with missing features and leads to improving the heuristic’s
speedup by 50%. We further extend BenchPress’s language model
into a directed synthesizer given compiler features. This directed
model produces 1.8× more matches to target features, it improves
the generation process’s accuracy by up to 36% and reduces in-
ference time by up to 72%, while we show both our techniques
outperform all other synthetic benchmark generation techniques
in producing high-quality programs that are indistinguishable from
human-written benchmarks. We hope this work to demonstrate a
sustainable method to direct feature space search of program gen-
eration and that BenchPress’s release to researchers will enable
research in related domains.

7 RELATEDWORK

BenchPress is inspired by BERT, a representation model by Devlin
et al. [9]. Contrary to previous techniques [28, 29], BERT learns on
unlabeled text data by jointly conditioning on both left and right
context. BERT enables multiple applications of this architecture
to a wide variety of difficult machine learning tasks, including
programming languages. In CuBERT [22], Kanade et al. apply BERT
over Python programs and evaluate it on finding typical mutation
faults. In CodeBERT [11], Feng et al. fine-tune BERT to perform
NL-PL and PL-NL transformations. In this work, we extend BERT
to a bidirectional generative model, with the help of [HOLE] token.

Cummins et al. [5] develop CLgen, a deep learning generator
based on LSTM [21] for OpenCL programs. They try to tackle
the compiler benchmark shortage by providing synthetic bench-
marks as training data for compiler heuristics. The authors present
the Grewe et al. [16] heuristic model improved its performance
by 1.27× when trained on their synthetic benchmarks. However,
Goens et al. [14] show that training with CLgen’s synthetic sam-
ples lead to a slowdown compared to training on human-written
benchmarks only. To explain this, they measure the AST depth of



Short Title PACT ’22, October 10–12, 2012, Chicago,IL

CLgen’s samples and show it is 3× smaller compared to human-
written benchmarks and code from GitHub and poor in features,
therefore unrealistic. This motivates us to develop BenchPress,
which produces 10× more unique kernels that are 7.5× larger on
average.

In 2019, Nye et al. develop SketchAdapt [26], which uses a
generator-synthesizer [2, 10] to generate program sketches given
I/O specifications. The synthesizer samples sketches and the gener-
ator fills <HOLE> tokens with statements. SketchAdapt performs
better than other architectures [2, 10], however it samples only a
pre-defined pool of operations, which restricts its diversity. Bruen
et al. [8], propose a Tree2Tree approach for code generation using
VAE. They encode AST nodes using Tree-LSTMs (Tai et al. [33])
and train their model on C++ functions. They test their approach
against a VAE with an LSTM Seq2Seq model. They use their model
as a synthesizer by sampling random AST representations which
they extend to new programs. Their Seq2Seq model achieves a com-
pilation rate of up to 67% with greedy search, however this happens
because the model greedily selects the most probable labels, lead-
ing to repetitive samples. When sampling with temperature, their
Tree2Tree architecture is able to generate a wider variety of sam-
ples, but only achieves a compilation rate of 22%, which translates
to a few functions.

Gupta et al. [17] develop SED, a two-stage generator. A synthe-
sizer receives I/O specifications and generates programs likely to
satisfy them and a neural debugger applies program repair to reform
them into functions that match specifications. Gupta et al. evaluate
three synthesizer architectures and measure (a) the correctness
of generated programs across tests and (b) the accuracy of their
debugger to repair code. While SED is an innovative work, Karel
is a small-scale language and SED’s generative performance on a
complex programming language is not evaluated. Faustino et al.
develop Anghabench [7] to tackle the benchmark shortage [5, 38].
Anghabench is a collection of C programs mined from GitHub. In
order to make it compilable, they use Psyche-C [25] type infer-
ence engine to apply type reconstruction and resolve dependencies.
Structs, unions and other composite data types are omitted or re-
declared with primitive types. Their benchmarks are compiling,
but cannot be executed. Compared to AnghaBench, BenchPress
resolves type dependencies of composite types and user-defined
functions without changing the functionality or semantics of pro-
grams.
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