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Abstract—Deploying convolutional neural networks (CNNs)
in embedded devices that operate at the edges of Internet of
Things (IoT) networks provides various advantages in terms
of performance, energy efficiency, and security in comparison
with the alternative approach of transmitting large volumes of
data for processing to the cloud. However, the implementation
of CNNs on low power embedded devices is challenging due
to the limited computational resources they provide and to the
large resource requirements of state-of-the-art CNNs. In this
paper, we propose a framework for the efficient deployment of
CNNs in low power processor-based architectures used as edge
devices in IoT networks. The framework leverages design space
exploration (DSE) techniques to identify efficient implementa-
tions in terms of execution time and energy consumption. The
exploration parameter is the utilization of hardware resources
of the edge devices. The proposed framework is evaluated using
a set of 6 state-of-the-art CNNs deployed in the Intel/Movidius
Myriad2 low power embedded platform. The results show that
using the maximum available amount of resources is not always
the optimal solution in terms of performance and energy effi-
ciency. Fine-tuned resource management based on DSE, reduces
the execution time up to 3.6% and the energy consumption up
to 7.7% in comparison with straightforward implementations.

Index Terms—Convolutional neural networks (CNNs), design
space exploration (DSE), embedded systems.

I. INTRODUCTION

HE MARKET of Internet of Things (IoT) is expected
T to continue to grow, as the number of connected devices
will reach 20.8 billion by 2020 [1]. Low-power embedded
platforms that often operate within power envelopes of less
than 1 W act as the edge devices of IoT networks. Among
others types, low-power visual sensors enable a wide range
of smart IoT applications, from domains such as transporta-
tion and surveillance. These applications perform complex
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tasks, such as image recognition and face detection enabled by
convolutional neural networks (CNNs). Due to the increased
requirements in terms of hardware resources of state-of-the-art
CNNs, they are often deployed in IoT network layers
with higher computational capabilities (e.g., Fog/Cloud) [2].
However, the fact that the edge devices operate within a tiny
power envelope, imposes limitations in the amount of data
that can be wirelessly transferred to the Fog/Cloud layers for
processing. Additionally, transferring safety critical data intro-
duces significant security challenges, especially for healthcare
wearables and surveillance applications.

Near-sensor processing is a natural direction of the evo-
lution of the IoT networks, since it addresses the above
challenges by avoiding expensive and possibly insecure data
transmissions [3]-[5]. Eliminating the latency imposed by data
transfers within IoT networks is critical for a wide range of IoT
applications, such as in augmented reality and robotics, where
lags impose speed restrictions on drones and robots that try
to use CNN inference to interpret real-time video. Also, shift-
ing the load from centralized workstations to distributed edge
devices reduces the energy consumption by minimizing the
energy spent on communication, thus making IoT networks
scalable. However, near-sensor processing requires the effi-
cient implementation of CNNs on edge devices, which is a
significant challenge due to the complexity of state-of-the-
art CNNs and the limited computational resources that edge
devices provide. To achieve CNN inference execution with
low latency along with low energy consumption, efficient fine-
tuned implementations are required that effectively exploit the
hardware resources of edge devices.

The need for mobile vision solutions with near-sensor pro-
cessing capabilities of IoT data prompted the development
of specialized low power architectures for CNN inference
execution. IoT devices that locally process data from visual
sensors are enabled by low power embedded platforms such
as multicore DSPs, embedded GPUs, and field programmable
gate arrays (FPGAs). From the market perspective, the annual
growth rate of the machine vision market is exceeding 13% [6]
and many commercial solutions are available today that enable
applications from domains such as drones, robotics, and
autonomous driving [7]-[9].

Current research mainly focuses on the acceleration of
CNNs using FPGAs and ASICs. CNNs have been deployed
in CPU/DSP and GPU architectures using highly opti-
mized frameworks such as Caffe [10], Tensorflow [11], and
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cuDNN [12] by Nvidia. These frameworks support GPU-
based platforms, such as Nvidia Tegra X1 [13] and spe-
cialized architectures for computer vision applications, such
as Intel/Movidius Myriad [7] and Mobileye EyeQ3. From
the software perspective, optimizations such as the Winograd
convolution algorithm [14] and Strassen [15] have been
proposed to further optimize CNN implementations. FPGA
approaches for CNN acceleration include, among others,
NeuFlow [16] and nn-X [17]. The former has been imple-
mented as an ASIC and integrated in the IBM SOI processor.
Other ASIC implementations are the Origami [18] and the
ShiDianNao [19].

Although many research groups focus on the design of
low power CNN accelerators, as described above, only
few works examine techniques and methodologies for the
efficient implementation of CNNs on edge devices [20].
This paper proposes a framework for CNN deployment
on low power processor-based architectures that have been
designed for computer vision applications. The implementa-
tion methodology is based on design space exploration (DSE)
to optimize the implementation of CNNs on the underlying
platform.

DSE is another area related with the present work. DSE
is a technique widely used in the embedded systems design.
In the context of neural networks, it is mainly used for two
purposes: 1) for the optimization of the CNN architectural
characteristics (e.g., [21]) and 2) for the optimization of the
underlying architecture in which CNNs will be deployed.
Indeed, there is a lot of work in the literature that focuses on
DSE for optimizing FPGA-based and ASIC accelerators for
CNNs [22]-[24]. However, the proposed framework targets
processor-based architectures that are used at the edges of IoT
networks and by leveraging DSE techniques, it provides effi-
cient CNN deployments. To the best of our knowledge there
exists no similar work about DSE for CNN implementation on
processor-based systems. The main features of the proposed
framework are the following.

1) Automatic deployment of CNNs on low power edge
devices. The framework is fully compatible with the
Caffe framework.

2) It supports DSE of hardware features, such as the num-
ber of processing units in which each layer can be
implemented.

3) It provides efficient CNN execution techniques, such
as the parallel execution of CNN branches, to further
reduce execution time of CNN inference.

4) It can be easily extended with new features and be
adapted to various low power embedded architectures.

The main contributions of this paper can be summarized as
follows.

1) The development of a framework for the implementa-
tion of trained CNNs on edge devices using the Caffe
interface.

2) Evaluation of DSE techniques for the optimization of
CNNs implemented on edge devices. DSE allows the
efficient utilization of hardware resources and the iden-
tification of tradeoffs between performance and energy
consumption.
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Fig. 1. High-level schematic of target architectures.

3) A methodology for implementing CNNs on edge
devices through systematic exploration, supported by the
proposed framework.

The rest of this paper is organized as follows. In Section II,
we describe the target architectures of the proposed methodol-
ogy. The framework and the CNN implementation methodol-
ogy are analyzed in Section III. The evaluation of the proposed
methodology and the demonstration of the framework follows.
Finally, in Section V we draw the conclusions.

II. EDGE DEVICES AND CNN
IMPLEMENTATION CHALLENGES

The proposed framework targets low power heterogeneous
processor-based architectures designed for computer vision
and deep learning applications. These devices are extremely
low power (often less than 1W) and are often used at the edges
of IoT networks to perform tasks enabled by CNNs, such as
object detection and recognition. The family of low power
edge devices includes the Intel/Movidius Myriad [7], CEVA
XM [8], and Cadence Tensilica vision DSP [9]. Fig. 1 shows a
high-level schematic of the architectures which are supported
by the deployment framework. The common architectural
features are the following.

1) Multiple Memory Hierarchies: A local memory, usually
an SRAM, provides low latency and high through-
put access. Its size is limited to few MB. A global
larger memory, such as a DRAM, provides significantly
more storage (e.g., hundreds of MB), but it is slower
and it is accessed through DMA transactions. A cache
memory may be used to reduce the cost of accessing
data stored in the global memory. A typical data man-
agement pattern is to fetch data from the global memory
to the local through DMA transactions and after the data
are processed by the processing elements, the result is
transferred back to the global memory through DMA.

2) Multiple Vector Processing Units (VPUs): They usu-
ally support VLIW, SIMD, and multiply accumulate
operations (MACs) with high efficiency. CEVA mx-6
and Tensilica vision P6 integrate 128 and 256 MAC:s,
respectively.

3) RISC processors often run an operating system.
Examples include two LEON CPUs in Myriad2 and
ARM Cortex i.MX 6 in YouSiP vision DSP based
on CEVA platform. They also handle tasks such as
interrupts, 10, etc.
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The efficient implementation of CNNs on edge devices with
the aforementioned characteristics is challenging, due to the
limited resources they provide and the high computational and
storage requirements of CNNs. A major implementation issue
that significantly affects the CNN inference performance is
the utilization of the limited local memory. Also, stalls may
frequently occur in ported memories under heavy data shar-
ing. Efficient local memory utilization will reduce the number
of DMA transfers which will benefit the energy consump-
tion. Additionally, extensive experimentation with Myriad2 has
shown that heavy DMA usage reduces the performance of the
DMA engine, with negative impact on application’s execution
time [25]. Furthermore, the management of the available pro-
cessing units, such as the efficient partitioning of the algorithm
between them and the memory alignment issues should be
carefully examined to effectively exploit the provided SIMD
features. They can be considered significant development chal-
lenges that require meticulous, fine grained implementation
tuning. Experimentation and time consuming adhoc solutions
are often used to address the above challenges. However, a
systematic exploration is required that will assist developers
to automatically deploy CNNs on such devices.

IIT. CNN IMPLEMENTATION FRAMEWORK
AND METHODOLOGY

In this section, we present the implementation methodology
of CNNs on edge devices and the proposed framework that
supports it.

A. Overview

Fig. 2 shows a high-level view of the CNN implementation
framework. The key components of the CNN implementation
framework are as follows.

1) The high-level API, written in Python, which is exposed
to developers for configuring the operation of the CNN
framework.

2) The CNN description, which analyzes the CNN specifi-
cations, allocates memory for weights, etc.

3) The deployment and execution layer of the framework
contains the CNN manager, which generates the CNN
maps that store information about each CNN layer (such
as type of layer, where the data associated with this
layer are allocated, which layer implementation from
the library will be used, e.g., convolution/fully con-
nected, which is the subsequent layer, etc.). Depending
on the functionality that has been selected (DSE, exe-
cution or analysis), the appropriate deployment(s) and
execution(s) are instructed.

4) The output is either the execution time and the energy
consumption for a single execution or DSE results with
tradeoffs between execution time, energy consumption,
and accuracy, as shown in Fig. 2. This depends on the
operation that has been selected by developers.

Details about each one of the components are provided in the
following sections.
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Fig. 2. Overview of the proposed CNN implementation framework.

B. High-Level API and Framework Functionality

The high-level API of the proposed framework is fully com-
patible with the Caffe API and it is developed in Python. It
serves three purposes: 1) to allow users to select between dif-
ferent framework operation modes; 2) to provide configuration
parameters for the CNN deployments on edge devices (e.g.,
configure resource utilization); and 3) to generate a set of
source files that provide a platform-specific CNN description.
It parses prototxt and caffemodel files, processes information
about edge platform specifications, such as the memory hierar-
chy and the number of available VPUs and manages profiling
results obtained by DSE.

The framework can operate in three different modes, which
are depicted in Fig. 3 and described below.

1) Single CNN Inference Execution: By providing CNN
architecture details (i.e., a profotxt and a caffemodel file),
along with an image or a batch of images, a single CNN
inference is executed on the edge device. Platform speci-
fications, such as the number of VPUs, which each layer
of the CNN will utilize, may also be provided for imple-
mentation tuning. The provided output is execution time
and energy consumption results of the CNN inference
execution.

2) DSE Mode: The input required to perform DSE is
the CNN architecture details, an image or a batch of
images and the hardware specifications which will be
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explored, such as the number of VPUs that each spe-
cific CNN layer will utilize. The output is a set of raw
profiling results for execution time and energy consump-
tion for each single CNN layer deployed by utilizing
a different amount of hardware resources. The API
can further process this output and provide a set of
Pareto optimal implementations of execution time versus
energy consumption.

3) DSE Profiling Results Analysis: Finally, in case the raw
profiling results have been produced by DSE earlier, they
can be fed to the high-level API to generate an execu-
tion time versus energy consumption Pareto curve. By
using this option, no CNN inference is executed on the
underlying hardware platform. It performs processing of
raw profiling results only.

C. CNN Description and CNN Deployment and
Execution Layers

The high-level API generates a set of C/C++ source files
that provide a low-level CNN description with information
manageable by the underlying platform. More specifically, the
source files contain the following.

1) Line-by-line suitable instructions for constructing and
storing in a vector data structure each layer object that
needs to be executed, including the layer parameters and
hyper-parameters of the CNN.

2) Raw floating point weights and bias vectors of the
network, as well as the batch of images and all the nec-
essary output buffers that will be used for implementing
and executing the CNN inference.

3) Details about the CNN architecture and information
about the types of layers used in order to minimize code
size in compile time.

4) The memory storage requirements of the CNN.
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The above information is forwarded to the CNN deployment
and execution layer to be processed by the CNN manager. The
latter controls the whole deployment and execution, depending
on the operation mode selected.

Fig. 4 shows a high-level execution model of the proposed
framework. With respect to data allocation, the CNN map
and all CNN data are allocated in the global memory of the
edge device, which is usually hundreds of MBs. The local
memory (few MBs) is used only for processing of data fetched
from DDR. Two buffers are allocated, to overlap communica-
tion with computation, implementing the widely used double
buffering technique.

A major implementation goal for all CNN layers was to effi-
ciently exploit the limited available memory of edge devices
and to reduce as much as possible the required DMA transac-
tions, especially when handling relatively large output maps.
The goal of preprocessing is to transform data in way to be
efficiently handled by VPUs, reduce the required memory size
and the number of DMA data transfers. The following two
data management techniques are applied in the context of
preprocessing.

1) Transferring padding elements from global to local
memory introduces a significant overhead. However,
in our implementation model, the elements that are
expected to be used for padding are computed in advance
by the corresponding VPU. Therefore, only the useful
data are transferred in the local memory, while padding
elements are added in the local memory. Thus, the
amount of data required to be transferred by DMA is sig-
nificantly reduced. The local calculation of padding by
each VPU is trivial and it does not impose any significant
overhead.

2) To effectively exploit the SIMD features of the VPUs,
data are aligned in memory and dummy elements are
added in vectors where required. Thus, although a
small memory size overhead is added, performance is
significantly improved.

As an example to highlight the significance of data preprocess-
ing, the input of the third layer of the GoogleNet is 64%56x56
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with padding equal to 1 and 192 output maps. The amount of
useful data is 64x56+56+2 = 401 408 Bytes, while the amount
of padding elements is (56 + 56 + 55 + 55) 2 % 64 = 28416
Bytes. Thus, by skipping the transferring of padding elements
from global to local memory and reproducing them locally,
the amount of data transferred is reduced by about 5.4 MB
for the 192 output maps.

After the preprocessing, the data are allocated in data buffers
in the local memory, to be processed by the VPUs. Typical
embedded systems data management techniques, such as dou-
ble buffering are applied to enable overlapping of computation
and communication and improve performance. After the data
are processed, they are fetched back to the global memory
through DMA transactions.

The CNN layers are executed one after the other. All infor-
mation about each layer (pointers to their I/O buffers, weights,
biases, as well as parameters like kernel size, striding) is pre-
computed offline and it is placed in the CNN description
source files in a map data structure, in which each object is a
single CNN layer. This process (which is actually an initial-
ization phase) lasts a few seconds and needs to be done just
once for each CNN implementation. The map is allocated in
the global memory (CNN map in Fig. 4). During the infer-
ence execution the CNN manager retrieves each layer object
and instructs its execution. As soon as the execution of the
current layer is completed and the data are transfered back to
the global memory, the CNN manager initiates the execution
of the subsequent layer.

The library of CNN layer implementations includes the
Convolution, Pooling, Fully Connected, LRN, Concat, Split,
and Dropout layers. All layers are implemented in C for
improving the compatibility of the framework, however,
platform-specific implementations (e.g., in highly optimized
assembly) usually provide major performance improvements
in the execution of CNN inference, especially with respect to
the convolution operation.

The Concat layer is a utility layer that concatenates multiple
input blobs to a single output blob and it is used by CNNs
such as the GoogleNet and Squeezenet. This layer is effi-
ciently implemented in the library of the proposed framework,
in order to avoid unnecessary memory accesses and data trans-
fers. The input layers of each Concat layer are offline identified
and they allocate their output directly to the Concat buffer,
instead of their own buffers, as shown in Fig. 5. Thus, there
is no need to transfer data from input layers to the Concat
buffer and the Concat layer execution time overhead is elim-
inated. Finally, the Split layer is a hidden layer produced by
the Caffe computational engine, which indicates that a certain
layer feeds multiple layers, by initiating a block of layers in
parallel branches. The Split layer is used to identify parallel
blocks and to perform the required computations to calculate
the number of buffers and the memory size of each one.

D. Design Space Exploration

The DSE operation mode is initiated by the high-level API
and managed by the CNN manager. The CNN manager exe-
cutes each single CNN layer by utilizing different amount
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of hardware resources in each execution. Execution time and
energy consumption results versus hardware resources utiliza-
tion are collected for each CNN layer. Thus, the output is a
set of different CNN implementations, where each implemen-
tation utilizes different amount of resources and therefore has
different characteristics in terms of execution time and energy
efficiency. The results are collected in a raw csv file. The
framework processes the profiling results and exports Pareto
plots of performance versus energy consumption, where each
Pareto point is a different CNN implementation. Developers
may select the one that better fits the CNN deployment
requirements.

E. Portability and Extensibility Issues

The framework has been designed to be applicable to
edge devices with architectural features similar to ones
described in Section II. Therefore, the high-level API and
the CNN description are platform independent. With respect
to the CNN deployment and execution layer, the library
of CNN layer implementations can be considered platform-
independent, since it provides C implementations for all layers.
However, in practice highly optimize platform-specific imple-
mentations of each layer are preferable, since they provide
improved results in terms of both execution time and energy
consumption.

Although the library contains a wide variety of layers, so
that several state-of-the-art CNNs can be implemented, new
layers can be seamlessly added by developers, in three steps.

1) Add the new layer in the library of CNN layer imple-

mentations in C or assembly.

2) Add required information about the new layer in the

CNN manager.

3) Provide the appropriate high-level API functions for the

newly added layer.

The high-level API provides a set of functions that enable
the exploration of an arbitrary number of hardware specifi-
cations. The framework does not provide any limitation in
the type of hardware specification that can be explored, since
the platform-specific details of the implementation of each
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layer are described in the library of CNN layers implemen-
tation. Although in this paper we focus on the exploration
of the number of VPUs in which each layer is implemented,
other options such as the type of convolution (direct, im2col,
Winograd) can also be explored by the proposed framework.
It is important to state that the algorithms used by the high-
level API exploit the native Caffe C++ libraries exposed to
Python packages. The fact that the auto-generated libraries are
in C/C++ improves the portability of the framework, as they
are usually fully supported by any modern device and therefore
minimizes the requirements for modifications. Also, the C++
framework is structured upon an object-oriented principle that
can be applied in any general-purpose or specialized system.
Although the CNN implementation framework is proposed for
low power edge devices, in which the deployment of CNNs
is challenging due to their limited resources, it is applicable
in any processor-based system, as well.

F. CNN Implementation Methodology

Fig. 6. shows how the framework can be actually used
by application developers for the deployment of CNNs in
edge devices. The user input is the specifications of various
CNN architectures. The implementation of each CNN is opti-
mized on the edge device through DSE. Pareto curves for each
CNN implementation are generated. Finally, the results are
merged to identify tradeoffs between execution time, energy
consumption, and error rate for different implementations. It
is important to clarify that in step 1, each Pareto point cor-
responds to a different implementation of the same CNN
architecture, while in step 2, each Pareto point corresponds to a
different CNN architecture. This implementation methodology
is supported by the framework presented earlier.

The input of the methodology is a set of CNN architec-
tures in a Caffe-compatible description, which are trained
for the same purpose, so that they can be interchangeable.
However, the execution time, the energy consumption, the
memory size requirements, and the accuracy provided by each
CNN architecture differs. The proposed framework provides a
wide variety of layers and supports various CNNs.

The implementation of each one of the provided CNN archi-
tectures is fine-tuned on the edge device, through DSE. By
evaluating various implementations of each layer, a set of
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optimized CNN implementations are identified for each CNN
architecture. Thus, the output of the first step of the methodol-
ogy is a Pareto curve of each CNN architecture, of execution
time versus energy consumption. Each Pareto point is a dif-
ferent implementation of the specific CNN architecture on the
edge device.

Then, the output of the first step is processed and in the
second step 3 Pareto plots are provided that show tradeoffs
between execution time, energy efficiency, and accuracy. In
contrast with the previous step, each Pareto point is a spe-
cific implementation of a different CNN architecture. The
Pareto optimal implementations of each CNN architecture that
are obtained in the first step are used to generate the corre-
sponding Pareto plots in the second step. In other words, the
first step the methodology identifies tradeoffs for each CNN
architecture. In the second step, the results are merged, to iden-
tify tradeoffs between fine-tuned implementations of different
CNN architectures.

1V. EVALUATION

In this section, we provide the evaluation of the proposed
framework and the CNN deployment methodology applied to
the Intel/Movidius Myriad2 embedded device, using a set of
state-of-the-art CNNs.

A. Framework Instantiation in Myriad and Evaluation Setup

Myriad 2 is a low power (about 1 W) SoC designed by
Intel/Movidius for computer vision and deep learning appli-
cations. It integrates 12 VPUs that operate at 600 MHz,
2 LEON4 processors and various hardware accelerators. With
respect to the memory hierarchy, Myriad provides a 2 MB
local multiported SRAM memory, named connection matrix
(CMX) that acts as a scratchpad and a 512 MB DDR2 global
memory.

Fig. 7 is a high-level view of the instantiation of the frame-
work on Myriad. LEON OS and LEON RT are two RISC
CPUs integrated in Myriad chip. Therefore, CNN manager
runs on LEON OS, while power measurements are handled
by LEON RT.
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More specifically, LEON OS executes the CNN descrip-
tion source files, allocates weights and biases in the DDR and
configures the CNN deployment details. Then, it initiates the
execution of the CNN manager, which manages the execution
of each CNN layer: the required segments of weights, biases,
and output maps are retrieved from the DDR and allocated
in the data buffers of the CMX. Then, the VPUs operate on
the data, by using the computational libraries that reside in
the CMX as well and are implemented in assembly. Finally,
the data are transfered back to the DDR I/O buffers and the
execution of the subsequent CNN layer follows. The above
process is repeated, until the whole CNN inference is executed.

The framework is evaluated using six CNNs of various
complexity: 1) AlexNet; 2) GoogleNet; 3) NiN-imagenet;
4) SqueezeNet; 5) VGG; and 6) ZFnet. The CNNs have been
selected based on the following two criteria.

1) To require various amount of computational resources
and to provide significantly different execution time,
energy consumption and accuracy results.

2) To be considered state-of-the-art and be widely used for
image recognition tasks.

Table I shows the specifications of the above CNNs. All
CNNs use the same input and are trained using ImageNet
dataset for the same number of output classes, therefore,
they can be used interchangeably. The number of layers
significantly ranges, from 13 (AlexNet and ZFnet) to 83
(GoogleNet). The same applies to the memory requirements,
which refers the size that the weights and biases occupy
in the global memory. All CNNs can be implemented in
Mpyriad, since their data fit in the global memory, which is
512MB. Another important metric is the top-5 error rate of
each CNN, that ranges from 19.7 (SqueezeNet) to 8 (VGG).
The proposed methodology will be used: 1) to provide fine-
tuned implementations of the above CNNs in Intel/Movidius
device and 2) to demonstrate tradeoffs between the execution
time, energy consumption, and between the fine-tuned CNN
implementations.

B. Experimental Results

Execution time was measured using recommended functions
provided by the Myriad development kit. Energy consumption
has been accurately calculated by using on-chip sensors that
measure the current that flows through various power rails,
provided by the Myriad 2 evaluation board. Energy consump-
tion measurement process is managed by the LEON RT, as
shown in Fig. 7. All experimental results refer to CNN infer-
ence execution time and operations are performed under the
IEEE 754 fp16 standard. The hardware specification which is
been explored in the context of this paper is the number of
Myriad VPUs in which each CNN layer is implemented. Four
hundred and eighty two configurations have been examined for
AlexNet, about 11M for GoogleNet, 351 for NiN-imagenet,
921K for SqueezeNet, 56 105 for VGG, and 315 for ZFnet.
The exploration time lasts up to 6 min for the relatively small
CNNs (e.g., AlexNet and SqueezeNet), up to 15 min for the
large ones (VGG, GoogleNet). In case of more degrees of
freedom (i.e., exploration for other parameters apart from the
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Fig. 9. Scalability of fully connected in Myriad. (a) Fully connected
exec. time versus number of processing units. (b) Fully connected energy
consumption versus number of processing units.

number of VPUs) it may increase significantly. Therefore,
if the exploration time becomes intolerable, heuristics may
be used to prune inefficient configuration and decrease the
exploration time.

Before applying the CNN deployment methodology in
Myriad, we examine the scalability of the convolution and the
fully connected layers. Fig. 8 shows the execution time and the
energy consumption of a 3x3 convolution, as the number of
processing units increases gradually. Although the execution
time continues to drop up to 12 cores, the energy consump-
tion decreases up to 11 cores, while it slightly increases when
using 12 cores. With respect to the scalability of the fully con-
nected layer (Fig. 9), the execution time drops up to 4 VPUs.
By utilizing more than 4 VPUs, the energy increases, without
improvement in the execution time.

There are two tasks which are performed during the exe-
cution of each layer: 1) the communication, which is the
DMA transaction between the global and the local memory
and 2) the computation, which is the actual data processing. It
is important to state that when multiple VPUs request DMA
transactions concurrently, the DMA engine becomes a bottle-
neck and the communication overhead increases. Therefore,
although the computational overhead tends to be reduced when
using utilizing more processing units, due to the exploitation
of parallelism, the communication overhead increases.

The execution time of convolutions is usually optimal on 11
or 12 VPUs. The reason, is the fact that since the convolution
is computationally intensive, the execution time is dominated
by the exploitation of parallelism and the communication over-
head is only a small amount of the total execution time, even
though a large number of VPUs is employed. On the other
hand, in the fully connected, the computation part is trivial
and the execution time is dominated by the communication
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TABLE I
DETAILS OF CNNs USED FOR EVALUATION

CNN input image output vector  #layers memory(MB)  Error rate
AlexNet [277 x 277 x 3] [1 x 1000] 13 117 17
GoogleNet [277 x 277 x 3] [1 x 1000] 83 16.6 7
NiN-imagenet ~ [277 x 277 x 3] ~ [1 x 1000] 16 155 17.5
SqueezeNet [277 x 277 x 3] [1 x 1000] 38 4.68 19.7
VGG [277 x 277 x 3] [1 x 1000] 16 276 8

ZFnet [277 x 277 x 3] [1 x 1000] 13 121 16.5
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Output of the first step of the methodology: fine tuning of CNN implementations on an edge device. (a) AlexNet: execution time versus energy.

(b) GoogleNet: execution time versus energy. (c) NiN-imagenet: execution time versus energy. (d) SqueezeNet: execution time versus energy. (e¢) VGG:

execution time versus energy. (f) ZFnet: execution time versus energy.

overhead. Therefore, utilizing more than 3—4 VPUs it only
adds communication overhead, with trivial benefits from the
exploitation of parallelism.

The above experiments highlight the need for exploration
in order to identify the most efficient utilization of hardware
resources for each layer. It is not possible for developers to
be aware of the exact amount of VPUs in which each layer
should be implemented in order to minimize execution time
and energy consumption, without applying DSE techniques.

The proposed CNN deployment methodology has been
applied to the implementation of the six CNNs of Table I
on Intel/Movidius Myriad2. The output of the first step of the
methodology is shown in Fig. 10. The Pareto plots for each
CNN architecture for execution time versus energy consump-
tion are automatically provided by the framework that supports
the methodology. Each point in each plot is a CNN implemen-
tation that utilizes a different amount of hardware resources.
In other words, a CNN implementation differs from another
one in the fact that at least one CNN layer utilizes a different
number of VPUs.

Tradeoffs between execution time and energy consumption
are identified for all CNN architectures. Detailed examina-
tion of results shows that the most computationally intensive
layers are the convolution layers, as expected. Indeed, experi-
ments shows that 68% up to 99% of the execution time of the
CNNs of Table I is spent in convolution. Since convolution is
a compute-bound operation, the corresponding layers tend to
utilize 11 or 12 VPUs. However, as shown earlier in Fig. 8(b)
that is not always the most energy efficient solution.

An interesting observation is the fact that in AlexNet, Nin-
imagenet, VGG, and ZFnet, the implementations are clustered
in groups. The results show that in the implementations that
belong to the same cluster, the convolution layers have the
exact same configuration (i.e., the corresponding convolution
layers use the same number of VPUs). However, they differ
in the number of VPUs used by the rest of the layers, such as
the pooling and the fully connected, which have a relatively
small impact in the execution time.

On the other hand, for the implementations that
belong to different clusters, the convolution layers have
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TABLE 1T
CUMULATIVE OUTPUT RESULTS OF THE FIRST STEP OF THE METHODOLOGY

AlexNet  GoogleNet  NiN-imagenet SqueezeNet VGG  ZFnet
Exec. time (ms) 101.8 249.1 244 85.5 586 99
% Exec. time gain 2.3 53 1.2 0.81 1.68 0.6
Energy consumption (mJ)  126.6 365.2 335.7 126.7 961 130.3
% Energy gain 0.5 3.6 0.12 0.78 1.53 5.16

160 - Pareto curve execution time vs.
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Pareto curve energy consumption vs. accuracy
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Output of the methodology: tradeoffs between execution time, energy consumption, and accuracy between various CNNs. (a) Execution time versus

energy consumption. (b) Execution time versus accuracy. (c) Energy consumption versus accuracy.

TABLE III
COMPARISON BETWEEN STRAIGHTFORWARD AND FINE-TUNED CNN IMPLEMENTATIONS

AlexNet  GoogleNet  NiN-imagenet  SqueezeNet VGG  ZFnet
Exec. time 12 VPUs (ms) 102 258.6 244 88.4 587.2  99.1
Exec. time fine-tuned (ms)  101.8 249.1 244 85.5 586 99
% Exec. time gain 0.29 3.67 0.0015 3.21 0.26 0.17
Energy 12 VPUs (mJ]) 139 380.5 337 131.9 1004 1412
Energy fine-tuned (mJ) 126.6 365.2 335.7 126.7 961 130.3
% Energy gain 8.95 4 0.39 3.98 43 7.72

different configurations. For example, AlexNet has five con-
volution layers. All the implementations of the bottom-right
cluster (the most energy efficient) in the AlexNet Pareto curve
in Fig. 10(a) utilize 11 VPUs for the first layer and 12 for the
rest ones. The implementations within this cluster differ in
the number of VPUs utilized by a pooling layer. However, the
implementations in the cluster above this one utilize 11 VPUs
for the third convolution, as well. Since the implementation of
convolution has major impact both in the execution time and
in the energy consumption, even a change in the implementa-
tion of a single convolutional layer only, affects the execution
time and the energy consumption much more than the pooling
and fully connected layers.

Table II shows the maximum gains in execution time and
energy consumption between the most high performance and
the most energy efficient implementations in each CNN, which
reach 5.3%.

The results of the second step of the methodology are
presented in Fig. 11. The DSE results of Fig. 10 are merged
and the accuracy parameter (i.e., error rate from Table I) is
also considered. Therefore, in Fig. 11 we present tradeoffs, not
between the implementations of a single CNN architecture as
we did in Fig. 10, but between different CNN architectures.
The implementations have been previously optimized though

DSE (and the results of DSE were presented in Fig. 10).
The Pareto plots that demonstrate tradeoffs between execu-
tion time, energy consumption, and accuracy are presented
in Fig. 11. Fig. 11(a) shows the Pareto curve for execution
time versus energy. The most efficient implementation in terms
of execution time is the SqueezeNet, implemented for high
performance (as obtained by the first step of the methodology).
The rest of the Pareto points are the SqueezeNet and AlexNet,
both tuned for energy efficiency. For instance, GoogleNet pro-
vides 258.6 ms execution time and 7% error rate. However,
by using SqueezeNet, error rate increases significantly, but
execution time decreases by 65%. Similarly, switching from
GoogleNet to AlexNet developers can trade accuracy (error
rate increases from 7% to 17%) for energy consumption, which
decreases by 63%.

To further examine the benefits of DSE methodologies in
comparison with straightforward solutions, Table III shows
the execution time and energy consumption results of imple-
menting all CNN layers in 12 VPUs. We consider the imple-
mentation on 12 VPUs as the baseline for comparison, since
it is the one in which all available resources are fully uti-
lized. The results show that by fine-tuning resource utilization
through DSE, the execution time slightly improves in compar-
ison with the straightforward approach. However, the energy
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consumption decreases significantly, up to 9%. This highlights
the importance of fine-tuning CNN implementations, as per-
formed by the first step of the methodology, before identifying
tradeoffs between execution time, energy, and accuracy.

V. CONCLUSION

This paper provides a systematic way of implementing com-
putationally intensive CNNs on low power edge devices. It
describes a CNN deployment methodology, which is supported
by a framework. The methodology is based on DSE. It enables
the fine tuning of the implementation of each CNN layer, along
with the identification of tradeoffs between execution time,
energy efficiency, and accuracy. The framework is demon-
strated by using six CNN architectures implemented on a low
power edge device.
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