
Received: 28 February 2021 - Revised: 15 May 2021 - Accepted: 28 June 2021 - IET Software
DOI: 10.1049/sfw2.12038

OR I G INAL RE SEARCH PA PER

Embedding and classifying test execution traces using neural
networks

Foivos Tsimpourlas1 | Gwenyth Rooijackers1 | Ajitha Rajan1 | Miltiadis Allamanis2

1School of Informatics, University of Edinburgh,
Edinburgh, UK

2Microsoft Research, Cambridge, UK

Correspondence

Foivos Tsimpourlas, School of Informatics,
University of Edinburgh, Edinburgh, UK
Email: F.Tsimpourlas@sms.ed.ac.uk

Funding information

Engineering and Physical Sciences Research Council,
Grant/Award Number: EP/L01503X/1; Facebook,
Grant/Award Number: Facebook Testing and
Verification Award 2018 & 2019

Abstract
Classifying test executions automatically as pass or fail remains a key challenge in software
testing and is referred to as the test oracle problem. It is being attempted to solve this
problem with supervised learning over test execution traces. A programme is instru-
mented to gather execution traces as sequences of method invocations. A small fraction
of the programme's execution traces is labelled with pass or fail verdicts. Execution traces
are then embedded as fixed length vectors and a neural network (NN) component that
uses the line‐by‐line information to classify traces as pass or fail is designed. The clas-
sification accuracy of this approach is evaluated using subject programs from different
application domains—1. Module from Ethereum Blockchain, 2. Module from PyTorch
deep learning framework, 3. Microsoft SEAL encryption library components, 4. Sed
stream editor, 5. Nine network protocols from Linux packet identifier, L7‐Filter and 6.
Utilities library, commons‐lang for Java. For all subject programs, it was found that test
execution classification had high precision, recall and specificity, averaging to 93%, 94%
and 96%, respectively, while only training with an average 14% of the total traces. Ex-
periments show that the proposed NN‐based approach is promising in classifying test
executions from different application domains.

KEYWORD S
execution trace, neural networks, software testing, test oracle

CCS CONCEPTS
● Software and its engineering → Software testing and
debugging; ● Computing methodologies → Supervised
learning by classification.

1 | INTRODUCTION

To make software testing faster, cheaper and more reliable, it is
desirable to automate as much of the process as possible. Over
the past decades, researchers have made remarkable progress
in automatically generating effective test inputs [1, 2].

Automated test input generation tools, however, generate
substantially more tests than manual approaches. This becomes
an issue when determining the correctness of test executions, a
procedure referred to as the test oracle, which is still largely
manual and relies on developer expertise. Recent surveys on
the test oracle problem [3–5] show that automated oracles
based on formal specifications, metamorphic relations [6] and
independent programme versions are not widely applicable and
difficult to use in practice.

In our recent work [7], we sought to address the test oracle
problem using supervised learning over execution traces of a
given system. In particular, we used neural networks (NNs),

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by anyone other than the ACM must be
honoured. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org. Conference’17, July 2017, Washington, DC, USA © 2021 Association for Computing Machinery. ACM ISBN 978‐x‐xxxx‐xxxx‐x/YY/MM. . .
$15.00 https://doi.org/10.1145/nnnnnnn.nnnnnnn.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is
properly cited.

© 2021 The Authors. IET Software published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.

IET Soft. 2022;16:301–316. wileyonlinelibrary.com/journal/sfw2 - 301

 17518814, 2022, 3, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/sfw

2.12038 by E
dinburgh U

niversity, W
iley O

nline L
ibrary on [20/02/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1049/sfw2.12038
https://orcid.org/0000-0001-8081-604X
mailto:F.Tsimpourlas@sms.ed.ac.uk
https://orcid.org/0000-0001-8081-604X
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://ietresearch.onlinelibrary.wiley.com/journal/17518814
http://crossmark.crossref.org/dialog/?doi=10.1049%2Fsfw2.12038&domain=pdf&date_stamp=2021-08-17

well suited to learning complex functions and classifying pat-
terns, to design the test oracles. We found this technique to be
widely applicable and easy to use, as it only requires execution
traces gathered from running test inputs through the pro-
gramme under test (PUT) to design the oracle. This is shown
in Figure 1 where a small fraction of the gathered execution
traces labelled with pass/fail (shown in light grey) is used to
train the NN model, which is then used to automatically
classify the remaining unseen execution traces (coloured dark
grey).

Previous work exploring the use of NNs for test oracles
has been in a restricted context—applied to very small pro-
grams with primitive data types and only considering their
inputs and outputs [8, 9]. Information in execution traces,
which we believe is useful for test oracles, has not been
considered by existing NN‐based approaches. Other bodies of
work in programme analysis have used NNs to predict method
or variable names and detect name‐based bug patterns [10, 11]
relying on static programme information, namely, embeddings
of the Abstract Syntax Tree or source code. Our approach in
[7] is the first attempt at using dynamic execution trace in-
formation in NN models for classifying test executions and has
the following steps:

1. Instrument a programme to gather execution traces as se-
quences of method invocations.

2. Label a small fraction of the traces with their classification
decision.

3. Design a NN component that embeds the execution traces
to fixed length vectors.

4. Design a NN component that uses the line‐by‐line trace
information to classify traces as pass or fail.

5. Train a NN model that combines the above components
and evaluate it on unseen execution traces for that
programme.

1.1 | New contributions

The contributions of this study, different from our previous
study, are summarised as follows:

1. Support for Java programs. Our work in [7] provided tool
support in the low level virtual machine (LLVM) [12]
framework to instrument the intermediate representation
(LLVM‐IR) of programmes to gather execution traces.
LLVM, however, does not provide front‐end support for

Java programmes. In this study, we provide tool support to
gather execution traces for Java programmes using the Soot
framework [13].

2. Extensive empirical evaluation. We augment the exper-
iments in [7] with 10 additional subject programmes—9
network protocols from L7‐filter [14] and 1 Java utilities
library from Defects4J [15], a database of real faults for
open‐source Java programmes. For these subject pro-
grammes, we evaluate the precision, recall and specificity of
our approach in classifying execution traces. We also assess
the size of the training set needed and compare accuracies
against a hierarchical clustering technique for classifying
execution traces proposed by Almaghairbe et al. [16].

3. Generalisation. We conduct an initial exploration into the
ambitious possibility of using a model, trained using traces
from one subject programme, to classify traces from other
programmes in the same application domain. We use FSMs
from the network protocol domain to evaluate this possi-
bility. We found that our approach for designing a NN
classification model was effective for all subject pro-
grammes. We achieved high accuracies in detecting both
failing and passing traces, with an average precision of 93%
and recall of 94%. Only a small fraction of the overall traces
(average 14%) needed to be labelled for training the clas-
sification models. We found that generalisation of a classi-
fication model from one network protocol to others in the
domain was feasible. Generalisation accuracies were not as
high as the accuracy achieved using separate classification
models, but we believe there is scope for improvement
using fine‐tuning in the future.

The study is organised as follows: Section 2 provides
background on test oracles and related work in the use of
machine learning for test oracles and more generally in software
testing. Section 3 presents the algorithms and implementations
of our approach including the new tool support for instru-
menting Java programmes. Our experimental setup and subject
programmes are described in Section 4. Performance of our
approach over the different subject programmes and compar-
ison to a state of the art approach is presented in Section 5.

2 | BACKGROUND

When a test oracle observes a test execution, it returns a test
verdict, which is either pass or fail depending on whether the
observations match expected behaviour. A test execution is

F I GURE 1 Key idea in our approach. NN, neural network; PUT, programme under test

302 - TSIMPOURLAS ET AL.

 17518814, 2022, 3, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/sfw

2.12038 by E
dinburgh U

niversity, W
iley O

nline L
ibrary on [20/02/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

the execution of the PUT with a test input. The importance
of oracles as an integral part of the testing process has been a
key topic of research for over three decades. We distinguish
four different kinds of test oracles, based on the survey by
Barr et al. in 2015 [3]. The most common form of test oracle
is a specified oracle, one that judges behavioural aspects of
the system under test with respect to formal specifications.
Although formal specifications are effective in identifying
failures, defining and maintaining such specifications is
expensive and also relatively rare in practice. Implicit test
oracles require no domain knowledge and are easy to obtain
at no cost. However, they are limited in their scope as they
are only able to reveal particular anomalies like buffer over-
flows, segmentation faults, and deadlocks. Derived test ora-
cles use documentations or system executions, to judge a
system's behaviour, when specified test oracles are unavai-
lable. However, derived test oracles, like metamorphic re-
lations and inferring invariants, are either not automated or
are inaccurate and irrelevant, making it challenging to use
them.

For many systems and much of testing as currently prac-
tised in industry, the tester does not have the luxury of formal
specifications or assertions or even automated partial oracles
[17, 18]. Statistical analysis and machine learning techniques
provide a useful alternative for understanding software
behaviour using data gathered from a large set of test
executions.

2.1 | Machine learning for software testing

Briand et al. [19], in 2008, presented a comprehensive over-
view of existing techniques that apply machine learning for
addressing testing challenges. Among these, the closest related
work is that of Bowring et al. in 2004 [20]. They proposed an
active learning approach to build a classifier of programme
behaviours using a frequency profile of single events in the
execution trace. Evaluation of their approach was conducted
over one small programme whose specific structure was well
suited to their technique. Machine learning techniques have
also been used in fault detection. Brun and Ernst, in 2004
[21], explored the use of support vector machines and deci-
sion trees to rank programme properties, provided by the
user, that are likely to indicate errors in the programme.
Podgurski et al., in 2003 [22], used clustering over function
call profiles to determine which failure reports are likely to be
manifestations of an underlying error. A training step de-
termines which features are of interest by evaluating those
that enable a model to distinguish failures from non‐failures.
The technique does not consider passing runs. In their ex-
periments, most clusters contain failures resulting from a
single error.

More recently, Almaghairbe et al. [16] proposed an un-
supervised learning technique to classify unlabelled execution
traces of simple programmes. They gathered two kinds of
execution traces, one with only inputs and outputs and
another that includes the sequence of method entry and exit

points, with only method names. Arguments and return
values are not used. They used agglomerative hierarchical
clustering algorithms to build an automated test oracle,
assuming that passing traces are grouped into large, dense
clusters and failing traces into many small clusters. They
evaluated their technique on 3 programmes from the SIR
repository [23]. The proposed approach has several limita-
tions. They only support programmes with strings as inputs.
They do not consider correct classification of passing traces.
The accuracy achieved by the technique is not high, classi-
fying approximately 60% of the failures. Additionally, the
fraction of outputs that need to be examined by the devel-
oper is around 40% of the total tests, which is considerably
higher than the labelled data used in our approach. We
objectively compared the accuracy achieved by the hierar-
chical clustering technique against our approach using 15
PUTs, discussed in Section 5. We found that our approach
achieves a significantly higher accuracy in classifying pro-
gramme executions across all case studies.

Existing work using execution traces for bug detection has
primarily been based on clustering techniques. Neural net-
works, especially with deep learning, have been very successful
for complex classification problems in other domains like
natural language processing, speech recognition, and computer
vision. There is limited work exploring their benefits for
software testing problems.

2.1.1 | Neural networks for test oracles

NNs were first used by Vanmali et al. [8] in 2002 to simulate
the behaviour of simple programmes using their previous
version, and applied this model to regression testing of un-
changed functionalities. Aggarwal et al. [24] and Jin et al. [9]
applied the same approach to test a triangle classification
programme that computes the relationship among three edge
inputs to determine the type of triangle. The few existing ap-
proaches using NNs have been applied to simple programmes
having small I/O domains. The following challenges have not
been addressed in existing work:

1. Training with test execution data and their vector
representation—Existing work only considers programme
inputs and outputs that are of primitive data types (integers,
doubles, and characters). Test data for real programmes
often use complex data structures and data types defined in
libraries. There is a need for techniques that encode such
data. In addition, existing work has not attempted to use
programme execution information in NNs to classify tests.
Achieving this will require novel techniques for encoding
execution traces and designing a NN that can learn from
them.

2. Test oracles for industrial case studies—Realistic pro-
grammes with complex behaviours and input data struc-
tures have not been previously explored.

3. Effort for generating labelled training data—Training data
in existing work has been over simple programmes, like the

TSIMPOURLAS ET AL. - 303

 17518814, 2022, 3, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/sfw

2.12038 by E
dinburgh U

niversity, W
iley O

nline L
ibrary on [20/02/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

triangle classification programme, where labelling the tests
was straightforward. Availability of labelled data that in-
cludes failing tests has not been previously discussed.
Additionally, the proportion of labelled data needed for
training and its effect on model prediction accuracy has not
been systematically explored.

2.1.2 | Deep learning for software testing

The performance of NNs as classifiers was boosted with the
birth of deep learning in 2006 [25]. Deep learning methods
have not been explored extensively for software testing and, in
particular, for the test oracle problem. Recently, a few tech-
niques have been proposed for automatic pattern‐based bug
detection. For example, Pradel et al. [11] proposed a deep
learning‐based static analysis for automatic name‐based bug
detection and Allamanis et al. [26] used graph‐based neural
static analysis for detecting variable misuse bugs. In addition to
these techniques, several other deep learning methods for
statically representing the code have been developed [27, 28].
We do not discuss these further since we are interested in
execution trace classification and in NNs that use dynamic
trace information rather than a static view of the code.

2.1.3 | Embedding execution traces for neural
networks

One of the main contributions of this study is an approach for
embedding information in execution traces as a fixed length
vector to be fed into the NN. There is limited work in using
representations of execution traces. Wang et al. [29] proposed
embeddings of execution traces in 2017. They used execution
traces captured as a sequence of variable values at different
programme points. A programme point is when a variable gets
updated. Their approach uses recurrent NNs to summarise the
information in the execution trace. Embedding of the traces is
applied to an existing programme repair tool. The work pre-
sented by Wang et al. has several limitations: 1. Capturing
execution traces as sequences of updates to every variable in
the programme has an extremely high overhead and will not
scale to large programmes. The study does not describe how
the execution traces are captured, they simply assume they have
them. 2. The approach does not discuss how variables of
complex data types such as structs, arrays, pointers, and objects
are encoded. It is not clear if the traces only capture updates to
user‐defined variables or if system variables are also taken into
account. 3. The evaluation uses three simple, small pro-
grammes (e.g. counting parentheses in a string) from students
in an introductory programing course. The complexity and
scale of real programmes is not assessed in their experiments.
Their technique for capturing and directly embedding traces as
sequences of updates to every variable is infeasible in real
programmes. Our approach captures and embeds traces as
sequences of method invocations and updates to global vari-
ables, which scales better than tracking every programme

variable. We have implemented our instrumentation in the
LLVM compiler framework that is language‐agnostic and
scales to industry‐sized programmes. We support all types of
variables and objects, including system‐defined variables.

Wang et al. [30] use a novel blended approach for learning
programme representations with execution traces. In their study,
they get a set of symbolic traces from programmes, one for each
execution path. They also get concrete traces from programme
executions, one for each test input. They create a blended trace
by merging one symbolic trace with all concrete traces that ex-
ercise this corresponding execution path. They develop a NN
architecture called LiGer, an attention‐based recurrent NN
(RNN). Their model consists of a vocabulary embedding layer, a
fusion layer and a programmes embedding layer. The first en-
codes words to embedding vectors. In the fusion layer, one
RNN embeds statements and a second RNN embeds all pro-
gramme states of that statement within the same time step.
Attention vectors are calculated and concatenated using these
embeddings as input. Finally, all attention vectors are fed into an
RNN sequentially and all time outputs are pooled. LiGer's
embedding quality is evaluated with COSET [31] benchmark.
Wang et al. also extend their model into an encoder‐decoder
architecture and evaluate their model for the purpose of
method name prediction. LiGer outperforms three relevant
code‐embedding approaches across a set of benchmarks.
However, their execution trace processing technique implies
significant complexity. They only evaluate it on small functions
with simple contexts. It is unknown whether this technique can
be scaled across multiple functions of a real codebase. On the
other hand, we show that our approach scales effectively over
real and complex programmes from different domains.

3 | APPROACH

Our approach for building an automated test oracle for clas-
sifying execution traces has the following steps:

Step 1: Instrument the PUT to gather traces when executing
the test inputs.

Step 2: Preprocess the traces to prune unnecessary
information.

Step 3: Encode the pre‐processed traces into vectors that can
be accepted by the NN.

Step 4: Design a NN model that takes as input an encoded
trace and outputs a verdict of pass or fail for that trace.

Figure 2a illustrates the steps in our approach, with the
bottom half of the figure depicting steps 3 and 4 for any given
pre‐processed trace from step 2. We discuss each of the steps
in the rest of this section.

3.1 | Instrument and gather traces

For every test input executed through the PUT, we aim to
collect an execution trace as a sequence of method invocations,

304 - TSIMPOURLAS ET AL.

 17518814, 2022, 3, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/sfw

2.12038 by E
dinburgh U

niversity, W
iley O

nline L
ibrary on [20/02/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

where we capture the name of the method being called, values
and data types of parameters, return values and their types,
and, finally, the name of the parent method in the call graph.
We find gathering further information, for example updates to
local variables within each method, incurs a significant over-
head and is difficult to scale to large programmes. To gather
this information we develop two different tools with support
for different programing languages to make our framework
widely applicable. Our first instrumentation tool is primarily
aimed at C/C++ programmes and uses the middleware of
LLVM [12] and instruments the intermediate representation
(LLVM‐IR) of programmes. This allows our implementation
to be language‐agnostic. LLVM provides front‐end support for
multiple programing languages in addition to C/C++ like
CUDA, Haskell, Swift, and Rust among others, along with
numerous libraries for optimisation and code generation.

Our second tool is aimed at Java programmes and uses
Soot [13] to collect execution traces. Soot is a Java optimisation
framework and provides libraries for users to analyse, instru-
ment and optimise applications. We develop a pass with Soot
to compile Java into bytecode and a second pass to convert
bytecode to Jimple‐IR. Jimple is a typed 3‐address intermediate
representation suitable for code transformations. Using Soot's
abstract programming interface (API), we develop a second
pass to instrument Jimple and finally compile into an execut-
able. Our Soot framework is also compatible with any other
programing language that can be compiled into Java bytecode,
for example Scala.

To perform the instrumentation, we traverse the PUT,
visiting each method. Every time a method invocation is
identified, a code is injected to trace the caller–callee pair, the
arguments and the return values. At the end of the programme,
a code is inserted to write the trace information to the output.

Each trace contains a sequence of method invocations.
This sequence comprises multiple lines, each line being a tuple
ðnp; nc; r; aÞ that represents a single method invocation within
it having the following:

� The names of the caller (parent) np and called nc functions.
� Return values rof the call, if any.

� Arguments passed a, if any.

The order of trace lines or method invocations is the
order in which the methods complete and return to the
calling point.

Our LLVM instrumentation supports all variable types
including primitive types (such as int, float, char, and bool),
composite data types (such as structs, classes, arrays) defined
by a user or library, and pointers for return and argument
values. Structs and classes are associated with a sequence of
values for their internal fields. We instrument these data
structures in a depth‐first fashion, until all primitive types are
traced. For pointers, we monitor the values they refer to.

Our instrumentation within Soot collects all Java primi-
tive types, strings, primitive wrapper classes, atomic wrapper
classes and arrays. We also support custom classes that are
defined within the scope of a subject Java translation unit.
Soot allows the instrumentation of public class members
only; private methods and variables are not accessed.

3.2 | Training set

We execute the instrumented programme with each test
input in the test suite to gather a set of traces. A subset of
the traces is labelled and used in training the classification
model. To label the traces as pass or fail, we compare
actual outputs through the PUT with expected outputs
provided by a reference programme or the specifications.
Section 4.1 discusses how we label traces for the subject
programmes in our experiment. It is worth noting that in
our approach, the developer will only need to provide ex-
pected outputs for a small proportion of tests rather than
the whole test suite. In the absence of expected output in
tests, how tests will be labelled is a common question.
Answering this question will depend on what is currently
being done by the developer or organisation for classifying
tests as pass or fail. Our approach will entail applying the
same practice to labelling, albeit to a significantly smaller
proportion of tests. To avoid data leakage in our

F I GURE 2 High‐level architecture of our approach and Encoder 1 description. (a) Gathering traces, encoding them, and using neural networks to classify
them; (b) Encoder 1 representing a single line in a trace as a vector containing function caller, callee names, arguments and return values

TSIMPOURLAS ET AL. - 305

 17518814, 2022, 3, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/sfw

2.12038 by E
dinburgh U

niversity, W
iley O

nline L
ibrary on [20/02/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

experiment in Section 4, we ensure that the expected
output is removed from the traces. We also remove ex-
ceptions, assertions and any other information in the pro-
gramme or test code that may act as a test oracle. This is
further discussed in Section 4.2.

3.3 | Preprocessing

The execution traces gathered with our approach include in-
formation on methods declared in external libraries, called
during the linking phase. To keep the length of the traces
tractable and relevant, we preprocess the traces to only keep
trace lines for methods that are defined within the module and
remove trace lines for declared functions that are not defined
but simply linked to it later.

For method invocations within loops, a new trace line is
created for each invocation of the same method within the
loop. For loops with large numbers of iterations, this can lead
to redundancy when the method is invoked with similar ar-
guments and return values. We address this potential redun-
dancy issue by applying average pooling to trace lines with
identical caller–callee methods within loops.

3.4 | Neural network model

In this step, we perform the crucial task of designing a NN
that learns to classify the pre‐processed traces as passing or
failing. The shape and size of the input traces vary widely,
and this presents a challenge when designing a NN that ac-
cepts fixed length vectors summarising the traces. To address
this, our network comprises three components that are
trained jointly and end‐to‐end: 1. a VALENC that encodes
values (such as the values of arguments and return values)
into DV ‐dimensional distributed vector representations,
shown within Encoder 1 in Figure 2b, 2. a TRENC that en-
codes variable‐sized traces into a single DT ‐dimensional
vector, shown as Long Short Term Memory (LSTM) in
Figure 2a, and finally, 3. a TRACECLASSIFIER that accepts the
trace representation for state and predicts whether the trace is
passing or failing. The multi‐layer perceptron (MLP) in
Figure 2a represents the TRACECLASSIFIER. We describe each
component in detail in the rest of this section.

3.4.1 | Encoding values

Values within the trace provide useful indications about clas-
sifying a trace. However, values—such as ints, structs, and
floats—vary widely in shape and size. We, therefore, design
models that can summarise variable‐sized sequences into fixed
length representations. In the machine learning literature, we
predominantly find three kinds of models that can achieve
this: RNNs, 1D convolutional NNs and transformers. In this
work, we employ LSTMs [32]—a commonly used flavour of
RNNs. Testing other models is left as future work. At a high‐

level, RNNs are recurrent functions that accept a vector ht of
the current state and an input vector xt and compute a new
state vector htþ1 ¼ RNNðxt; htÞ, which ‘summarises’ the
sequence of inputs up to time t. A special initial state h0 is
used at t ¼ 0.

To encode a value v, we decompose it into a sequence of
primitives v¼ ½p0; p1;…� (integers, floats, and characters etc.).
Each primitive pi is then represented as a binary vector
bi ¼ eðpiÞ containing its bit representation padded to the
largest primitive data type of the task. For example, if int64 is
the largest primitive, then all bis have dimensionality of 64.
This allows us to represent all values (integers, floats, strings,
structs, pointers etc.) as a unified sequence of binary vectors.
We encode v into a DV ‐dimensional vector by computing

ValEncðvÞ ¼ LSTMvðeðpLÞL;ValEncð½p0; p1;…; pL−1�ÞÞ;

where LSTMv is the LSTM that sequentially encodes the bis.
Note that we use the same VALENC for encoding arguments and
return values, as seen in Figure 2b. The intuition behind this
approach is that the bits of each primitive can contain valuable
information. For example, the bits corresponding to the
exponent range of a float can provide information about the
order of magnitude of the represented number, which in turn
may be able to discriminate between passing and failing traces.

3.4.2 | Representing a single trace line

Armed with a NN component that encodes values, we can
now represent a single line ðnp; nc; r; aÞ of the trace. To do this,
we use VALENC to encode the arguments and the return value
r. We concatenate these representations along with one‐hot
representations of the caller and callee identities, as shown in
Figure 2b. Specifically, the vector encoding ti of the ith trace
line is the concatenation

ti ¼ ValEncðaÞ;ValEncðrÞ; 1HotðnpÞ; 1HotðncÞ
� �

;

where 1HOT is a function that takes as input the names of the
parent or called methods and returns a one‐hot vector that
uniquely encodes that method name. For methods that are rare
(appear fewer than kmin times) in our data, 1HOT collapses
them to a single special Unknown name. This is similar to
other machine learning and natural language processing
models and reduces sparsity, often improving generalisation.
The resulting vector ti has size 2DV þ 2k where k is the size of
each one‐hot vector.

3.4.3 | Encoding traces

Now that we have built a NN component that encodes single
lines within a trace, we design TRENC that accepts a sequence
of trace line representations t0…tN and summarises them into
a single DT ‐dimensional vector. We use an LSTM with a
hidden size DT , and thus

306 - TSIMPOURLAS ET AL.

 17518814, 2022, 3, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/sfw

2.12038 by E
dinburgh U

niversity, W
iley O

nline L
ibrary on [20/02/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

TrEncðt0…tNÞ ¼ LSTMtr tN;TrEncðt0…tN−1Þð Þ;

where LSTMtrðÞ is an LSTM network that summarises the
trace line representations.

3.4.4 | Classifying traces

With the NN components described so far we have managed
to encode traces into fixed length vector representations. The
final step is to use those computed representations to make a
classification decision. We treat failing traces as the positive
class and passing traces as the negative class since detecting
failing runs is of more interest in testing. We compute the
probability that a trace is failing as

PðfailÞ ¼ TraceClassifierð½TrEncðt0…tNÞ�Þ;

where the input of TRACECLASSIFIER is the output vector of
TRENC. Our implementation of TRACECLASSIFIER is a MLP with
sigmoid non‐linearities and a single output, which can be
viewed as the probability that the trace is a failing trace. It
follows that PðpassÞ ¼ 1 − PðfailÞ.

3.4.5 | Training and implementation details

We train our network end‐to‐end in a supervised fashion,
minimising the binary cross entropy loss. All network param-
eters (parameters of LSTMv and LSTMtr and parameters of
the MLP) are initialised with random noise. For all the runs on
our network we use DV ¼ 128, DT ¼ 256. The TRACE-

CLASSIFIER is an MLP with three hidden layers of size 256, 128
and 64. We use the Adam optimiser [33] with a learning rate of
10e − 5.

For our subject programmes, we find the aforementioned
feature values to be optimal for performance and training time,
after having experimented with other NN architectures, vary-
ing the DV , DT sizes, and the hidden layers in the MLP. We
explored increasing DV to 256, 512, DT to 512, 1024 and the
size of hidden layers to 512 and 1024.

To handle class imbalance in datasets, we explicitly coun-
teract the imbalance in the loss function by down‐weighting
the samples within the most popular class such that samples
of both class participate equally within this function.

Our implementation of the proposed approach is available
at https://github.com/fivosts/Learning‐over‐test‐executions.

4 | EXPERIMENT

In our experiment, we evaluate the feasibility and accuracy of
the NN architecture proposed in Section 3 to classify execu-
tion traces for 15 subject programmes and their associated test
suites. We investigate the following questions regarding feasi-
bility and effectiveness:

Q1. Precision, Recall and Specificity: What is the pre-
cision, recall and specificity achieved over the subject
programmes?

To answer this question, we use our tool to instrument the
source code to record execution traces as sequences of method
invocations, arguments and return values. A small fraction of
the execution traces are labelled (training set) and fed to our
framework to infer a classification model. We then evaluate the
precision, recall and specificity achieved by the model over
unseen execution traces (test set) for that programme. The test
set includes both passing and failing test executions. We use
Monte Carlo cross‐validation, creating random splits of the
dataset into training and test data. We created 15 such random
splits and averaged the precision, recall and specificity
computed over them.

Q2. Size of training set: How does size of the training set
affect precision and recall of the classification model?

For each programme, we vary the size of the training set
from 5% to 30% of the overall execution traces and observe its
effect on the precision and recall achieved.

Q3. Comparison against state of art: How does the
precision, recall and specificity achieved by our technique
compare against agglomerative hierarchical clustering, pro-
posed by Almaghairbe et al. [16] in 2017?

We choose to compare against the hierarchical clustering
work as it is the most relevant and recent in classifying
execution traces. Traces used in their work are sequences of
method invocations, similar to our approach. Other test oracle
work that use NNs is not used in the comparison as they do
not work over execution traces and are limited in their appli-
cability to programmes with numerical input and output, which
is not the case for the programmes in our experiment.

Q4. Generalisation of the classification model: Can a
classification model inferred from execution traces of one
programme be used to classify test executions over other pro-
grammes in the same domain?

For the network protocol domain, we evaluate the accuracy
of using a classification model inferred using traces from a
single protocol detection finite state machine (FSM) to classify
test executions from other protocol FSMs. In our experiments,
we do not use a validation set to tune the hyper‐parameters in
the NN model.

All experiments are performed on a single machine with
four Intel i5‐6500 CPU cores, Nvidia RTX 2060 GPU, 16 GB
of memory.

4.1 | Labelling traces

All our subject programmes are open source, and most of
them were only accompanied by passing tests. This is not
uncommon as most released versions of programmes are
correct for the given tests. We take these correct programmes
to be reference implementations. To enable evaluation of our
approach that distinguishes correct versus incorrect executions,
we need subject programmes with bugs. We, therefore,

TSIMPOURLAS ET AL. - 307

 17518814, 2022, 3, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/sfw

2.12038 by E
dinburgh U

niversity, W
iley O

nline L
ibrary on [20/02/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://github.com/fivosts/Learning%2Dover%2Dtest%2Dexecutions

generate PUTs by automatically mutating the reference
implementation using common mutation operators [34] listed
below:

1. Arithmetic operator replacement applied to {þ;−;*; =;
−−;þþ}.

2. Logical connector replacement applied to {&&; ‖; !}.
3. Bitwise operator replacement applied to {&; |;∧; ;≪;≫}.
4. Assignment operator replacement applied to {þ¼;−¼ ;

*¼; =¼;%¼;≪¼;≫¼; & =, |=, ∧ =}.

A PUT is generated by seeding a single fault into the
reference implementation at a random location using one of
the above mutation operators. We used an independent open‐
source mutation tool1 to generate PUTs from a given reference
programme. Figure 3 shows a PUT generated by seeding a
single fault into a reference programme. As seen in Figure 3,
we run each test, Ti, in the test suite, through both the
reference programme and PUT and label the trace as passing if
the expected output, EOi, from the reference matches the
actual output, AOi, from the PUT. If they do not match, the
trace is labelled as failing. We rejected PUTs from mutations
that did not result in any failing traces (outputs always match
with the reference). This avoids the problem of equivalent
mutants. All the PUTs in our experiment had both passing and
failing traces.

4.2 | Subject programmes

We chose subject programmes from different domains to
assess the applicability of our approach, namely from the
blockchain, deep learning, encryption and text editing domains.
A description of the programmes and associated tests is as
follows:

1. Ethereum [35] is an open‐source platform based on
blockchain technology, which supports smart contracts.
Within it, we evaluate our approach over the Difficulty
module that calculates the mining difficulty of a block in
relation to different versions (eras) of the cryptocurrency
(Byzantium, Homestead, Constantinople etc.). The calculation
is based on five fields of an Ethereum block, specified in the
test input.

Tests: We use the default test inputs provided by Ethereum's
master test suite for the Difficulty module. We test this module
for the Byzantium era of the cryptocurrency (version 3.0). The
test suite contains 2254 automatically generated test inputs.
Each test input contains one hex field for the test input of the
difficulty formula and another hex field for the expected output
of the programme. All the test inputs provided with the module
are passing tests with the actual output equal to the expected
output. As a result, we use the provided module as a reference
implementation. As described in Section 4.1, we seed faults into
the reference implementation to generate PUTs, each

containing a single mutation. For the difficulty module, we
generate two PUTs: 1. Ethereum‐Seal Engine (SE) with a
seeded fault in the core functionality of the difficulty module
and 2. Ethereum‐common difficulty (CD) with a fault seeded in
one of the functions that is external to the core function but
appears in the call graph of the module. The balance between
passing and failing tests varies between the two PUTs,
Ethereum‐CD being perfectly balanced and Ethereum‐SE be-
ing slightly imbalanced (828 failing and 1426 passing tests).

2. Pytorch [36] is an optimised tensor library for deep
learning, widely used in research. In our experiment, we eval-
uate our model over the intrusive_ptr class, which implements
a pointer type with an embedded reference count. We chose
this class because it had a sizeable number of tests (other
modules had <20 published tests).

Tests: Implementation of the class is accompanied by 638
tests, all of which are passing. We, thus, use this as the
reference implementation. As with Ethereum, we apply mu-
tations to the intrusive_ptr implementation to generate a single
PUT. Upon comparison with the reference, 318 of the existing
tests are labelled as passing through the PUT and 320 as
failing.

3. Microsoft SEAL [37] is an open‐source encryption li-
brary. In our experiment, we study one component within
Microsoft SEAL—the Encryptor module, which is accompa-
nied by tests. This component is responsible for performing
data encryption.

Tests: The Encryptor component is accompanied by 133
tests. The provided tests were all passing tests, with matching
expected and actual output. As with previous programmes, we
generate a PUT by mutating the original implementation. On
the PUT, 11 tests fail and 122 pass.

4. Sed [38] is a Linux stream editor that performs text
transformations on an input stream.

Tests: We use the fifth version of Sed available in the SIR
repository [23]. This version is accompanied by 370 tests, of
which 352 are passing and 18 are failing. The failing tests point
to real faults in this version. Since the implementation was
accompanied by both passing and failing, we used it as the
PUT. We did not seed faults to generate the PUT.

F I GURE 3 Labelling test executions by matching actual and expected
behaviour. AO, actual output; EO, expected output; PUT, programme
under test

1
https://github.com/chao‐peng/mutec.

308 - TSIMPOURLAS ET AL.

 17518814, 2022, 3, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/sfw

2.12038 by E
dinburgh U

niversity, W
iley O

nline L
ibrary on [20/02/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://github.com/chao%2Dpeng/mutec%2520

5. L7‐Filter [14] is a packet identifier for Linux. It uses
regular expression matching on the application layer data to
determine what protocols are used. It works with unpredict-
able, non‐standard and shared ports. We study the following
nine protocols, implemented as FSMs, separately in our
evaluation:

1. Ares–P2P file sharing
2. BGP–Border Gateway Protocol
3. Biff–New mail notification
4. Finger–User information server
5. FTP–File Transfer Protocol
6. Rlogin–Remote login
7. TeamSpeak–VoIP application
8. Telnet–Insecure remote login
9. Whois–Query/response system (e.g. for domain name)

Tests: For each of the network protocol FSMs, we use test
suites generated by Yaneva et al. [39] that provide all‐transition
pair coverage. The test suites for the FSMs have both passing
and failing tests.

6. Commons‐lang [40] is a java library from Apache
Commons with utility classes for the java.lang API. This is
a large codebase and contains Java classes such as Object
and Class. We gather this subject programme from the
Defects4J database that provides several versions of this
library and a labelled set of passing and failing test cases for
each version.

Tests: Defects4J contains different versions of commons‐
lang. Most of them have very few or even no failing tests.
These versions do not provide our model with failing examples
to learn and predict; therefore, we discard them. We use the
34th version of this programme, which contains 559 passing
and 27 failing tests. These 27 tests are caused by real bugs
found in this version of the subject programme; therefore, we
do not seed faults to generate the PUT.

4.2.1 | Checks to avoid data leakage

We ensure that no test oracle data is leaked into traces. We
remove expected outputs, assertions, exceptions, test names
and any other information that may act directly or indirectly as
a test oracle. For example, Ethereum uses the BOOST testing
framework to deploy its unit tests. We remove expected out-
puts and assertions in the test code that compare the actual
output with the expected output for example
BOOST_CHECK_EQUAL.

For PUTs generated by seeding faults into the reference
implementation, we only use one PUT for each reference
implementation except in the case of Ethereum where we
generated two PUTs, since faults were seeded in different files.
Generating more PUTs for each reference implementation
would be easy to do. However, we found that our results across
PUTs for a given reference programme only varied slightly. As
a result, we only report results over one to two PUTs for each
reference implementation.

4.3 | Performance measurement

For each PUT, we evaluate performance of the classification
model over unseen execution traces. As mentioned in
Section 3.4, we use positive labels for failing traces and nega-
tive labels for passing. We measure

1. Precision as the ratio of number of traces correctly classi-
fied as ‘fail’ (TP) to the total number of traces labelled as
‘fail’ by the model (TP + FP).

2. Recall as the ratio of failing traces that were correctly
identified (TP/(TP + FN)).

3. Specificity or true negative rate (TNR) as the ratio of
passing traces that were correctly identified (TN/
(TN + FP)).

TP, FP, TN, and FN represent true positive, false positive,
true negative and false negative, respectively.

4.4 | Hierarchical clustering

In research question 3 in our experiment, we compare the
classification accuracy of our approach against agglomerative
hierarchical clustering proposed by Almaghairbe et al. [16].
Their technique also considers execution traces as sequences
of method calls but only encoding callee names. Caller names,
return values and arguments are discarded. We attempted to
add the discarded information but found that the technique
was unable to scale to large number of traces due to both
memory limitations and a time complexity of Oðn3Þ, where n
is the number of traces. For setting clustering parameters for
each subject programme, we evaluate different types of
linkage (single, average, and complete) and a range of
different cluster counts (as a percentage of the total number
of tests): 1%, 5%, 10%, 20% and 25%. We use Euclidean
distance as the distance measure for clustering. For each
programme, we report the best clustering results achieved
over all parameter settings.

5 | RESULTS AND ANALYSIS

In this section, we present and discuss our results in the
context of the research questions presented in Section 4.

5.1 | Q1. Precision, recall and specificity

Table 1 shows the precision, recall and specificity achieved by
the classification models in our approach for the different
PUTs. Results achieved with the hierarchical clustering
approach by Almaghairbe et al. [16] are also presented in
Table 1 for comparison, but this is discussed in Q3 in Sec-
tion 5.3. The column showing % of traces used in training
varies across programmes; we show the lowest percentage that
is needed to achieve near maximal precision and recall.

TSIMPOURLAS ET AL. - 309

 17518814, 2022, 3, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/sfw

2.12038 by E
dinburgh U

niversity, W
iley O

nline L
ibrary on [20/02/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

The classification models for all 15 PUTs achieve more
than 71% precision and 86% recall, with an average of 93% and
94%, respectively. Our technique works particularly well for
Pytorch, Sed and all networking protocols, achieving >¼ 94%.
This implies that the number of false positives in the classifi-
cation is very low and a large majority of the failing traces is
correctly identified.

The classification models for all PUTs also achieve high
specificity (>¼ 79%, average 96%). This implies that the NN
models are able to learn runtime patterns that distinguish not
only failing executions but also passing executions with a high
degree of accuracy. These results are unprecedented as we are
not aware of any technique in the literature that can classify
both passing and failing executions at this level of accuracy.

5.1.1 | Analysis

To understand the results in Table 1, for each of the PUTs, we
inspected and compared passing and failing traces using a
combination of longest common subsequence, syntactic
diffs, and manual inspection. We also performed ablation—
systematically removing information (one parameter at a time)
from the traces, training new classification models with the
modified traces and observing their effect on precision, recall
and specificity (TNR). In our experiments, we systematically
remove the following parameters from the original traces:
function call names, arguments, and return values. Table 2
shows the results from our ablation study. We discuss the re-
sults for each of the programmes in the following paragraphs:

Over SEAL Encryptor, our approach achieves 75% pre-
cision, 86% recall and 98% specificity when trained with 30%
of the traces. The encryptor requires a higher fraction of traces
for training when compared to other PUTs, as the number of
failing traces is very small (¼11), unlike other programmes.
Although we handle imbalance in datasets by weighting sam-
ples in the loss function, the NN still needs some represen-
tatives of the failing class during training. Using 10% of the
traces in training will only provide one example of failing trace
(10% of 11), which is not enough for the NN model to learn to
distinguish failing versus passing behaviour. Training using
30% of the traces includes 3 failing traces, which allows the
NN to achieve 75% precision. The high precision with only 3
failing traces is because all the failing traces for this programme
have the same call sequence, which is sufficiently different
from the passing traces. Not all passing traces have the same
sequence. However, due to the availability of a larger set of
passing traces (training with 30% is 40 passing traces), the NN
is able to identify the different method call patterns in passing
traces accurately (98% specificity). The ablation study in
Table 2 shows that all the parameters contribute to model
performance as removing them has a detrimental effect.

For PyTorch, we achieve 99% precision, 98% recall and
99% specificity when trained with 10% of the traces. The
dataset for PyTorch PUT is balanced (318 passing and 320
failing). 10% of the traces during training provides sufficient
examples from both passing and failing classes for the NN to
learn to distinguish them. We find that the reason for the su-
perior performance of our model over PyTorch is that all
failing traces have significantly fewer trace lines than passing

TABLE 1 Precision, recall and true negative rate (TNR) using our approach and hierarchical clustering

PUT Lines of code % Traces for training Total # traces

Our approach Hierarchical clustering [16]

Precision Recall TNR Precision Recall TNR

Ethereum‐CD 55,927 15 2254 0.80 0.82 0.79 1.0 0.49 1.0

Ethereum‐SE 55,927 15 2254 0.99 0.82 0.86 1.0 0.25 1.0

Pytorch 21,090 10 638 0.99 0.98 0.99 0.48 1.0 0.16

SEAL encryptor 25,967 30 132 0.75 0.86 0.98 0.16 0.36 0.83

Sed 4492 10 370 0.94 0.94 0.99 0.35 0.63 0.86

Commons‐lang 49,028 40 586 0.71 0.94 0.98 0.07 0.96 0.4

Ares protocol 1261 3 16,066 0.97 0.98 0.97 0.94 0.24 0.0

BGP protocol 1025 5 16,009 0.99 0.99 0.99 0.18 0.01 0.98

Biff protocol 627 15 1958 0.97 0.99 0.99 0.43 0.22 0.72

Finger protocol 791 10 2775 0.99 0.99 0.99 0.53 0.13 0.92

FTP protocol 995 10 9677 0.99 0.99 0.98 0.07 0.001 0.98

Rlogin protocol 955 10 4121 0.97 0.96 0.99 1.0 0.04 1.0

Teamspeak protocol 3284 10 1945 0.95 0.99 0.96 1.0 0.11 1.0

Telnet protocol 1019 10 319 0.98 0.96 0.95 0.29 0.02 0.87

Whois protocol 784 9 4412 0.98 0.99 0.99 0.49 0.03 0.98

Abbreviations: BGP, Border Gateway Protocol; CD, common difficulty; FTP, File Transfer Protocol; PUT, programme under test; SE, Seal Engine.

310 - TSIMPOURLAS ET AL.

 17518814, 2022, 3, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/sfw

2.12038 by E
dinburgh U

niversity, W
iley O

nline L
ibrary on [20/02/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

traces. The consistent difference in the length of traces be-
tween the two classes allows the NN to easily distinguish them.
The ablation study in Table 2 shows that arguments in traces
matter for model performance, while method names and re-
turn values are irrelevant.

With Sed, our model achieves 94% precision and recall and
99% specificity using 10% of the traces in training. The dataset
for Sed is unbalanced, with only 18 failing and 352 passing
traces. 10% of the traces in training uses 2 failing tests and 35
passing tests. Given the extremely small sample of failing tests,
it is surprising that the model classifies and identifies failing
traces with such high precision and recall. To understand this,
we examined both the passing and the failing trace lines. We
find that the length of passing and failing traces is similar. All
failing traces, however, have a call to a function, getChar, to-
wards the end of the trace. This function call is absent in
passing traces. We believe that associating this function call to
failing traces may have helped the performance of the NN. The
ablation study in Table 2 shows that all the parameters
considered in our traces are important for the model
performance.

For Ethereum‐CD, our model achieves 80% precision,
82% recall and 79% specificity when trained with 15% of the
traces—169 passing and 169 failing. Ethereum‐CD was
generated from the reference implementation using an arith-
metic operator mutation in a function deeply embedded in the
call graph for the difficulty module. Differences between
failing and passing traces are not apparent, and analysing the
longest common subsequence, syntactic difference and manual
inspections did not reveal any characteristic feature for the
failing or passing traces. We believe that the model perfor-
mance of around 80% precision, recall and specificity is due to
the similarity between the passing and failing traces and the
esoteric nature of the mutation. The ablation study for this
programme reveals that all the features in the traces slightly
impact the model performance.

For commons‐lang, our model achieves 71% precision,
94% recall and 98% specificity using 40% of the traces. This
subject programme only contains 27 failing executions versus
559 passing executions. There is a stark imbalance between
passing and failing traces for this programme, which impacts
the precision achieved. We also observe that the failing

TABLE 2 Precision (P), recall (R) and specificity (TNR) for each
PUT omitting certain trace information

PUT Omitted info. P R TNR

Ethereum‐CD Function names 0.63 0.64 0.62

Return values 0.68 0.87 0.60

Arguments 0.54 0.78 0.35

Ethereum‐SE Function names 0.96 0.84 0.35

Return values 0.99 0.97 0.93

Arguments 0.96 0.84 0.33

Pytorch Function names 0.99 1.0 1.0

Return values 0.99 0.99 0.99

Arguments 0.51 0.99 0.04

Seal encryptor Function names 0.53 0.87 0.92

Return values 0.46 0.99 0.90

Arguments 0.28 0.88 0.76

Sed Function names 0.19 0.72 0.24

Return values 0.48 0.52 0.85

Arguments 0.30 0.40 0.73

Commons‐lang Function names 0.58 1.00 0.97

Return values 0.74 0.88 0.99

Arguments 0.78 0.95 0.99

Finger Function names 0.99 0.95 0.99

Return values 0.98 0.97 0.99

Arguments 0.52 0.19 0.88

Telnet Function names 0.93 1.0 0.76

Return values 0.82 1.0 0.25

Arguments 0.76 1.0 0.00

Ares Function names 0.96 0.98 0.95

Return values 0.95 0.99 0.75

Arguments 0.93 0.96 0.68

BGP Function names 0.99 0.98 0.98

Return values 0.98 0.99 0.98

Arguments 0.97 0.97 0.97

Biff Function names 0.58 0.84 0.41

Return values 0.56 0.92 0.35

Arguments 0.51 0.64 0.40

FTP Function names 0.99 0.99 0.98

Return values 0.97 0.97 0.98

Arguments 0.88 0.93 0.84

Rlogin Function names 0.95 0.96 0.96

Return values 1.0 0.92 1.0

Arguments 0.85 0.91 0.94

(Continues)

TAB LE 2 (Continued)

PUT Omitted info. P R TNR

Teamspeak Function names 0.91 0.97 0.91

Return values 0.94 0.98 0.94

Arguments 0.77 0.86 0.77

Whois Function names 0.96 0.96 0.96

Return values 0.96 0.96 0.96

Arguments 0.72 0.75 0.73

Abbreviations: BGP, Border Gateway Protocol; CD, Common Difficulty; FTP, File
Transfer Protocol; PUT, programme under test; SE, Seal Engine.

TSIMPOURLAS ET AL. - 311

 17518814, 2022, 3, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/sfw

2.12038 by E
dinburgh U

niversity, W
iley O

nline L
ibrary on [20/02/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

execution traces consist of multiple calls to a string conver-
sion function, toString, towards the final parts of the
sequence. We find this can serve as a distinguishing feature
between passing and failing executions. It is worth noting that
our classifier's performance significantly drops when
removing function names in the ablation study and it may be
because the toString function is no longer visible. In contrast,
removing arguments or return values does not affect the
performance visibly.

For Ethereum‐SE, our model achieves 99% precision,
82% recall and 86% specificity with 15% traces in training—
214 failing and 124 passing. Unlike Ethereum‐CD, mutation
to generate Ethereum‐SE was in the core functionality.
Failing traces when compared to passing traces had differ-
ences towards the end of the trace, which is easily distin-
guished by the NN. Curiously, removing return values in the
ablation study increases recall and specificity. This may be
because the model was previously overfitting to return
values in traces, which may not have been relevant to the
classification.

For L7‐Filter networking protocols, all programmes have
enough test inputs to help our model learn programme fea-
tures with a small percentage of execution traces. Especially for
Ares protocol with 16,066 test inputs, our model can achieve
97% precision, 98% recall and 97% specificity, labelling only
3% of the total traces for training. For BGP protocol, we train
on 5% of the total traces and achieve 99% precision, 99%
recall and 99% specificity. In all networking protocols, failing
traces correspond to executions that lead to non‐accepted
states of the protocol's FSM. We observe that the sequence
of function invocations is similar in both passing and failing
executions. However, the state information in return values
and arguments is critical in order to determine correctness. The
ablation study supports this argument, as removing function
names in any networking protocol has no effect in the classi-
fier's performance. On the other hand, in all the protocols
except for BGP, removing arguments dramatically decreases
the model's precision, recall and specificity. Removing return
values leads to a slight performance reduction. In Biff and
Telnet, return values seem to be as important as arguments for
our model's accuracy.

5.1.2 | Summary

Overall, we find that NN models for all our PUTs perform
well as a test oracle, achieving an average of 93% precision,
94% recall and 96% specificity. The NN models perform
exceptionally well for programmes whose traces have charac-
teristic distinguishing features between passing and failing
executions, such as differences in trace lengths or presence of
certain function call patterns. In the absence of such features,
NNs can still do well if they have enough training samples, as
in Ethereum‐CD. We also find that our approach can cope
effectively with unbalanced data sets—4 of the 15 pro-
grammes in our experiment have unbalanced passing and
failing traces.

5.2 | Q2. Size of training set

Figure 4 shows the precision and recall achieved by our
approach with different training set sizes. The fraction of
traces needed in training to achieve near maximal performance
was 3% to 40% across the PUTs. Excluding SEAL Encryptor
and commons‐lang, all the other programmes only needed to
be trained over 15% of the traces to achieve near maximal
performance. Both SEAL Encryptor and commons‐lang had
very few failing traces, requiring a larger fraction of traces to
get sufficient representation of failing classes during training.
As seen in the plots in Figure 4, increasing the % of traces
used in training does not increase precision and recall for all
PUTs. For instance, Pytorch and Sed observe a dramatic in-
crease in precision and recall when going from 5% to 10%
traces in training. The performance, however, stagnates after
that point with increasing traces. With Ethereum‐CD and
Ethereum‐SE, precision or recall becomes worse after 20%
traces. This may be because the model is overfitting to the
training traces.

It is also worth noting that the absolute size of our training
set varies across subject programmes. We find that our
approach works with training sets with as few as 3 failing traces
to as many as 214. The range of passing tests in training was
between 31 and 169.

5.3 | Q3. Comparison against state of art

Table 1 presents precision, recall, and specificity (TNR) ach-
ieved by the agglomerative hierarchical clustering proposed by
Almaghairbe et al. [16] on each of the PUTs. Comparing the
precision, recall and TNR of our approach versus hierarchical
clustering, we find our approach clearly outperforms the
clustering approach on all but the Ethereum‐CD PUT. This is
because the hierarchical clustering assumption does not hold
for these programmes. According to this assumption, the
passing traces tend to be grouped in a few big clusters and
failing traces are grouped into many small clusters. However,
for these programmes, passing traces tend to be grouped in
many small clusters based on their call sequence pattern,
making it hard to distinguish them from failing traces by simply
comparing cluster sizes.

With Ethereum‐CD, the hierarchical clustering approach
achieves precision and specificity of 100% and a recall of
49%. This is achieved with complete‐linkage clustering,
Euclidean distance and a cluster count equal to 10% of the
total traces. In contrast, our approach achieves a precision of
80%, recall of 82% and specificity of 79%. To enable better
comparison, we plot the precision‐recall curve of the NN
model in Figure 5 for Ethereum‐CD, using 15% of the traces
in training.

This curve shows the precision and recall of our trained
model with respect to different values of the classification
threshold. It is clear from the plot that for the same value of
recall (49%), hierarchical clustering performs marginally better
than our approach—100% versus 99%. Hierarchical clustering

312 - TSIMPOURLAS ET AL.

 17518814, 2022, 3, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/sfw

2.12038 by E
dinburgh U

niversity, W
iley O

nline L
ibrary on [20/02/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

works well over the Ethereum‐CD PUT because the traces are
clustered into just one big passing cluster and one failing
cluster. The lack of cluster fragmentation improved the accu-
racy of the hierarchical clustering approach. Nevertheless, our
model achieves comparable performance for such traces. In
addition, our model allows tradeoff between precision and
recall by changing the classification threshold, which may be
driven by requirements or priorities of the use case. This
tradeoff is not possible with the clustering approach.

5.4 | Q4. Generalisation

In this research question, we conduct an initial exploration
into the ambitious possibility of using a model, trained using
traces from one subject programme, to classify traces from
other programmes in the same application domain. Figures 6
and 7 represent the precision and recall achieved by models
trained using traces from the Biff protocol and Whois pro-
tocol, respectively, to classify traces produced by other FSMs.

F I GURE 4 Precision and recall achieved by classification model over each programme under test. BGP, Border Gateway Protocol; FTP, File Transfer
Protocol

TSIMPOURLAS ET AL. - 313

 17518814, 2022, 3, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/sfw

2.12038 by E
dinburgh U

niversity, W
iley O

nline L
ibrary on [20/02/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

We find that the model trained using traces from Biff ach-
ieves high accuracy over the Ares protocol with precision and
recall close to 1.0 and reasonable precision (>0:8) for BGP,
FTP, Rlogin, Teamspeak, and Whois protocols. The lowest
precision (0.17) was observed with Telnet. The average pre-
cision achieved in classifying traces from unseen FSMs was
0.79. The recall achieved by the model is lower than the
precision, indicating that the model missed identifying failing
traces in each of these protocols. Overall, the model trained

with Biff traces was successful in identifying failing traces in
other FSMs that have similar patterns to Biff. Failing traces
with differing patterns were missed. We confirmed this
observation by checking the results from the Whois model.
Although the precision and recall numbers are different from
the Biff model, the reasoning for the classification success
was the same—the extent of similarity in execution patterns
between FSMs. With the current approach, we find there is
scope to generalise a classification model from a single FSM
to multiple FSMs in the networking domain. However,
achieving high accuracies with generalisation is a difficult
problem and we plan to take small, definitive steps towards
addressing this challenge in the future. As a next step, we will
explore tuning the classification model from an individual
FSM with sample traces from other FSMs to improve the
generalisation performance.

5.5 | Threats to validity

We see three threats to the validity of our experiment based on
the selection of subject programmes and associated tests.

First, PUTs for 4 out of the 15 subject programmes in our
experiment were generated by seeding faults into a reference
implementation. A reference implementation with only passing
tests is not suitable for evaluating our approach. To address
this, we generated a faulty implementation and ran the original
tests through the PUT to gather both passing and failing traces.F I GURE 5 Precision–recall curve for Ethereum‐CD

F I GURE 6 Biff trained model–Precision and recall for unseen finite state machines. BGP, Border Gateway Protocol; FTP, File Transfer Protocol

F I GURE 7 Whois trained model–Precision and recall for unseen finite state machines. BGP, Border Gateway Protocol; FTP, File Transfer Protocol

314 - TSIMPOURLAS ET AL.

 17518814, 2022, 3, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/sfw

2.12038 by E
dinburgh U

niversity, W
iley O

nline L
ibrary on [20/02/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

It is possible that using real faults in place of seeded faults may
lead to different results. However, Andrews et al. have shown
that the use of seeded faults leads to conclusions similar to
those obtained using real faults [41, 42]. For one of the subject
programmes, Sed, we did not artificially seed faults but instead
used the existing implementation as it was accompanied by
both passing and failing tests.

Second, the number of tests that accompanied our subject
programmes was not very large, ranging from 132 to 16,066
tests. The NN models in our experiments produced good
performance results with small‐ to medium‐sized test suites
that may be automatically or manually generated. Our
approach is constrained by the amount of training data and not
by the size of the test suite. As a result, for programmes
accompanied by large test suites, the NN model will need a
larger training set (the fraction of traces to be used in training
might still be 14%). Nevertheless, the labelling effort for a
fraction of the tests in our approach is still less than the current
practice of labelling all the tests.

Finally, we conducted our study on subject programmes
from five different application domains, which are not repre-
sentative of all the application domains. Given that our
approach has no domain specific constraints, we believe it will
be widely applicable.

6 | CONCLUSION

In this study, we describe a novel approach for designing a test
oracle as a NN model, learning from the execution traces of a
given programme. We have implemented an end‐to‐end
framework for automating the steps in our approach, (1)
gathering execution traces as sequences of method invocations,
(2) encoding variable length execution traces into a fixed length
vector, and (3) designing a NN model that uses the trace in-
formation to classify the trace as pass or fail. We augmented
our work in [7] by supporting Java programmes in addition to
C/C++ in Step 1. In addition, we conducted an extensive
evaluation using 15 realistic PUTs and tests. We found that the
classification model for each PUT was effective in classifying
passing and failing executions, achieving an average of 93%
precision, 94% recall and 96% specificity while only training
with an average 14% of the total traces. We outperform the
hierarchical clustering technique proposed in recent literature
by a large margin of accuracy for 14 out of the 15 PUTs and
achieved comparable performance for the other PUTs. We
carried out an initial experiment by generalising a classification
model learnt over one protocol FSM to classify executions
over other network protocol FSMs. The results for precision
and recall over other unseen FSMs were not as high as the
individual FSM classification models. In the future, we plan to
explore techniques that will improve the generalisation per-
formance of the NN models.

ACKNOWLEDGEMENTS
This work was supported by the EPSRC Centre for
Doctoral Training in Pervasive Parallelism (EP/L01503X/1)

at the University of Edinburgh, School of Informatics and
the Facebook Testing and Verification Award 2018 and
2019.

CONFLICT OF INTEREST
No conflict of interest has been declared by the authors.

PERMISSION TO REPRODUCE MATERIALS
FROM OTHER SOURCES
None.

DATA AVAILABILITY STATEMENT
The data that support the findings of this study are openly
available in github at https://github.com/fivosts/Learning‐
over‐test‐executions.

ORCID
Foivos Tsimpourlas https://orcid.org/0000-0001-8081-
604X

REFERENCES
1. Chen, T.Y., et al.: An orchestrated survey on automated software test case

generation. J. Syst. Software. 86(8), 1978–2001 (2013)
2. Bertolino, A.: Software testing research: Achievements, challenges,

dreams. In: Future of Software Engineering, pp. 85–103. IEEE Com-
puter Society (2007)

3. Barr, E., et al.: The oracle problem in software testing: A survey. IEEE
Trans. Softw. Eng. 41(5), 507–525 (2015)

4. Nardi, P.A., Damasceno, E.: A survey on test oracles. Adv. Theor. Appl.
Inf. 1(2), 50–59 (2015)

5. Langdon, W., et al.: Inferring automatic test oracles. In: Proceedings
of the 10th Search‐Based Software Testing, pp. 5–6. Buenos Aires
(2017)

6. Liu, H., et al.: How effectively does metamorphic testing alleviate the
oracle problem? IEEE Trans. Software Eng. 40(1), 4–22 (2014)

7. Tsimpourlas, F., Rajan, A., Allamanis, M.: Supervised learning over test
executions as a test oracle. In: The 36th ACM/SIGAPP Symposium on
Applied Computing‐Software Engineering Track. ACM South Korea
(2021)

8. Vanmali, M., Last, M., Kandel, A.: Using a neural network in the software
testing process. Int. J. Intell. Syst. 17(1), 45–62 (2002)

9. Jin, H., et al.: Artificial neural network for automatic test oracles gen-
eration. In: Proceedings of International Conference on Computer
Science and Software Engineering, vol. 2, pp. 727–730. IEEE Wuhan
(2008)

10. Alon, U., et al.: Code2vec: Learning distributed representations of code.
arXiv preprint arXiv:1803.09473 (2018)

11. Pradel, M., Sen, K.: Deepbugs: A learning approach to name‐based bug
detection. Proc. ACM Program Lang. 2(OOPSLA), 147 (2018)

12. Lattner, C.: LLVM: An infrastructure for multi‐stage optimization.
Master's thesis, Computer Science Dept., University of Illinois at Urbana‐
Champaign, Urbana. http://llvm.cs.uiuc.edu (2002)

13. Vallée‐Rai, R., et al.: Soot‐a java bytecode optimization framework. In:
Proceedings of the 1999 Conference of the Centre for Advanced Studies
on Collaborative Research, CASCON'99, pp. 13. IBM Press (1999)

14. L7‐filter: Application layer packet classifier for linux. ClearCenter.
http://l7‐filter.clearos.com/ (2013). Accessed 13 Aug 2021

15. Just, R., Jalali, D., Ernst, M.D.: Defects4j: A database of existing faults to
enable controlled testing studies for java programs. In: Proceedings of
the 2014 International Symposium on Software Testing and Analysis,
ISSTA 2014, pp. 437–440. Association for Computing Machinery, New
York (2014)

16. Almaghairbe, R., Roper, M.: Separating passing and failing test execu-
tions by clustering anomalies. Software Qual. J. 25(3), 803–840 (2017)

TSIMPOURLAS ET AL. - 315

 17518814, 2022, 3, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/sfw

2.12038 by E
dinburgh U

niversity, W
iley O

nline L
ibrary on [20/02/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://github.com/fivosts/Learning%2Dover%2Dtest%2Dexecutions
https://github.com/fivosts/Learning%2Dover%2Dtest%2Dexecutions
https://orcid.org/0000-0001-8081-604X
https://orcid.org/0000-0001-8081-604X
https://orcid.org/0000-0001-8081-604X
http://llvm.cs.uiuc.edu
http://l7-filter.clearos.com/
https://orcid.org/0000-0001-8081-604X

17. Hierons, R.M.: Verdict functions in testing with a fault domain or test
hypotheses. ACM Trans. Software Eng. Methodol. 18(4), 14 (2009)

18. Hierons, R.M.: Oracles for distributed testing. IEEE Trans. Softw. Eng.
38(3), 629–641 (2012)

19. Briand, L.C.: Novel applications of machine learning in software testing.
In: 2008 International Conference on Quality Software (QSIC'08),
pp. 3–10. IEEE Oxford (2008)

20. Bowring, J., Rehg, J.M., Harrold, M.J.: Active learning for automatic clas-
sification of software behavior. Software Eng. Notes. 29, 195–205 (2004)

21. Brun, Y., Ernst, M.D.: Finding latent code errors via machine learning
over program executions. In: Proceedings of the 26th International
Conference on Software Engineering, pp. 480–490. Edinburgh (2004)

22. Podgurski, A., et al.: Automated support for classifying software failure
reports. In: Proceedings of 25th International Conference on Software
Engineering 2003, pp. 465–475. IEEE Portland (2003)

23. Do, H., Elbaum, S., Rothermel, G.: Supporting controlled experimen-
tation with testing techniques: An infrastructure and its potential impact.
Empir. Software Eng. 10(4), 405–435 (2005)

24. Aggarwal, K.K., et al.: A neural net based approach to test oracle.
Software Eng. Notes. 29(3), 1–6 (2004)

25. Hinton, G., Osindero, S., Teh, Y.‐W.: A fast learning algorithm for deep
belief nets. Neural Comput. 18(7), 1527–1554 (2006)

26. Allamanis, M., Brockschmidt, M., Khademi, M.: Learning to represent
programs with graphs. In: International Conference on Learning Rep-
resentations Arxiv (2018)

27. Alon, U., Levy, O., Yahav, E.: Code2seq: Generating sequences from
structured representations of code. arXivpreprint arXiv:1808.01400 (2018)

28. Allamanis, M., Peng, H., Sutton, C.: A convolutional attention network
for extreme summarization of source code. In: International Conference
on Machine Learning (2016)

29. Wang, K., Singh, R., Su, Z.: Dynamic neural program embedding for
program repair. In: International Conference on Learning Representa-
tions (2018)

30. Wang, K., Su, Z.: Learning blended, precise semantic program embed-
dings Arxiv, (2019)

31. Wang, K., Christodorescu, M.: Coset: A benchmark for evaluating neural
program embeddings Arxiv, (2019)

32. Hochreiter, S., Schmidhuber, J.: Long short‐term memory. Neural
Comput. 9(8), 1735–1780 (1997)

33. Diederik, P.K., Ba, J.: Adam: A method for stochastic optimization. In:
3rd International Conference for Learning Representations (2015)

34. Jia, Y., Harman, M.: An analysis and survey of the development of
mutation testing. IEEE Trans. Software Eng. 37(5), 649–678 (2011)

35. Ethereum Project (release 3.5). Open Source. https://github.com/
ethereum/aleth (2019). Accessed 13 Aug 2021

36. Paszke, A. & Chintala, S.: Pytorch https://pytorch.org/ (2017). Accessed
13 Aug 2021

37. Microsoft Research, Redmond. https://github.com/Microsoft/SEAL
(2019). Accessed 13 Aug 2021

38. Sed, linux stream editor. https://linux.die.net/man/1/sed (2009).
Accessed 13 Aug 2021

39. Yaneva, V., et al.: Accelerated finite state machine test execution using
gpus. In: Asia‐Pacific Software Engineering Conference (2018)

40. Commons lang. Apache Commons. https://commons.apache.org/
proper/commons‐lang/ (2020). Accessed 13 Aug 2021

41. Andrews, J.H, et al.: Using mutation analysis for assessing and comparing
testing coverage criteria. IEEE Trans. Software Eng. 32(8), 608–624
(2006)

42. Do, H., Rothermel, G.: On the use of mutation faults in empirical as-
sessments of test case prioritization techniques. IEEE Trans. Software
Eng. 32(9), 733–752 (2006)

How to cite this article: Tsimpourlas, F., et al.:
Embedding and classifying test execution traces using
neural networks. IET Soft. 16(3), 301–316 (2022).
https://doi.org/10.1049/sfw2.12038

316 - TSIMPOURLAS ET AL.

 17518814, 2022, 3, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/sfw

2.12038 by E
dinburgh U

niversity, W
iley O

nline L
ibrary on [20/02/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://github.com/ethereum/aleth
https://github.com/ethereum/aleth
https://pytorch.org/
https://github.com/Microsoft/SEAL
https://linux.die.net/man/1/sed
https://commons.apache.org/proper/commons-lang/
https://commons.apache.org/proper/commons-lang/
https://doi.org/10.1049/sfw2.12038

	Embedding and classifying test execution traces using neural networks
	1 | INTRODUCTION
	1.1 | New contributions

	2 | BACKGROUND
	2.1 | Machine learning for software testing
	2.1.1 | Neural networks for test oracles
	2.1.2 | Deep learning for software testing
	2.1.3 | Embedding execution traces for neural networks

	3 | APPROACH
	3.1 | Instrument and gather traces
	3.2 | Training set
	3.3 | Preprocessing
	3.4 | Neural network model
	3.4.1 | Encoding values
	3.4.2 | Representing a single trace line
	3.4.3 | Encoding traces
	3.4.4 | Classifying traces
	3.4.5 | Training and implementation details

	4 | EXPERIMENT
	4.1 | Labelling traces
	4.2 | Subject programmes
	4.2.1 | Checks to avoid data leakage

	4.3 | Performance measurement
	4.4 | Hierarchical clustering

	5 | RESULTS AND ANALYSIS
	5.1 | Q1. Precision, recall and specificity
	5.1.1 | Analysis
	5.1.2 | Summary

	5.2 | Q2. Size of training set
	5.3 | Q3. Comparison against state of art
	5.4 | Q4. Generalisation
	5.5 | Threats to validity

	6 | CONCLUSION
	ACKNOWLEDGEMENTS
	CONFLICT OF INTEREST
	PERMISSION TO REPRODUCE MATERIALS FROM OTHER SOURCES
	DATA AVAILABILITY STATEMENT

