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ABSTRACT
The challenge of automatically determining the correctness
of test executions is referred to as the test oracle problem and
is a key remaining issue for automated testing. The paper
aims at solving the test oracle problem in a scalable and
accurate way. To achieve this, we use supervised learning
over test execution traces. We label a small fraction of the
execution traces with their verdict of pass or fail. We use
the labelled traces to train a neural network (NN) model
to learn to distinguish runtime patterns for passing versus
failing executions for a given program.

We evaluate our approach using case studies from different
application domains - 1. Module from Ethereum Blockchain,
2. Module from PyTorch deep learning framework, 3. Mi-
crosoft SEAL encryption library components and 4. Sed
stream editor. We found the classification models for all sub-
ject programs resulted in high precision, recall and specificity,
averaging to 89%, 88% and 92% respectively, while only train-
ing with an average 15% of the total traces. Our experiments
show that the proposed NN model is promising as a test ora-
cle and is able to learn runtime patterns to distinguish test
executions for systems and tests from different application
domains.

CCS CONCEPTS
� Software and its engineering � Software testing
and debugging; � Computing methodologies� Super-
vised learning by classification.
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1 INTRODUCTION
As the scale and complexity of software increases, the number
of tests needed for effective validation becomes extremely
large, slowing down development, hindering programmer pro-
ductivity, and ultimately making development costly [9]. To
make testing faster, cheaper and more reliable, it is desirable
to automate as much of the process as possible.

Over the past decades, researchers have made remark-
able progress in automatically generating effective test in-
puts [12, 16]. Automated test input generation tools, however,
generate substantially more tests than manual approaches.
This becomes an issue when determing the correctness of
test executions, a procedure referred to as the test oracle,
that is still largely manual, relying on developer expertise.
Recent surveys on the test oracle problem [11, 31, 35] show
that automated oracles based on formal specifications, meta-
morphic relations [34] and independent program versions
are not widely applicable and difficult to use in practice. In
this paper, we seek to address the test oracle problem. More
specifically, for a system with a large set of test inputs, that
are automatically and/or manually generated, we ask,
“ Is there a widely applicable technique that automates the
classification of test executions as pass/fail ? ”

Key Idea. We explore supervised machine learning to
infer a test oracle from labelled execution traces of a given
system. In particular, we use neural networks (NNs), well
suited to learning complex functions and classifying patterns,
to design the test oracles. Our technique is widely applicable
and easy to use, as it only requires execution traces gathered
from running tests through the program under test (PUT)
to design the oracle. This is shown in Figure 1 where a
small fraction of the gathered execution traces labelled with
pass/fail (shown in light gray) is used to train the NN model
which is then used to automatically classify the remaining
unseen execution traces (colored dark gray).

Previous work exploring the use of NNs for test oracles has
been in a restricted context – applied to very small programs
with primitive data types, and only considering their inputs
and outputs [28, 40]. Information in execution traces which
we believe is useful for test oracles has not been considered
by existing NN-based approaches. Other bodies of work in
program analysis have used NNs to predict method or variable
names and detecting name-based bug patterns [7, 38] relying
on static program information, namely, embeddings of the
Abstract Syntax Tree (AST) or source code. Our proposed
approach is the first attempt at using dynamic execution trace
information in NN models for classifying test executions.

Our approach for inferring a test oracle has the following
steps,
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Figure 1: Key idea in our approach.

(1) Instrument a program to gather execution traces as
sequences of method invocations.

(2) Label a small fraction of the traces with their classifi-
cation decision.

(3) Design a NN component that embeds the execution
traces to fixed length vectors.

(4) Design a NN component that uses the line-by-line trace
information to classify traces as pass or fail.

(5) Train a NN model that combines the above components
and evaluate it on unseen execution traces for that
program.

The novel contributions in this paper are in Steps 3, 4 and
5. Execution traces from a program vary widely in their
length and information. We propose a technique to encode
and summarise the information in a trace to a fixed length
vector that can be handled by a NN. We then design and
train a NN to serve as a test oracle.

Labelled execution traces. Given a PUT and a test
suite, we gather execution traces corresponding to each of
the test inputs in the test suite with our instrumentation
framework. Effectively learning a NN classifier for a PUT
that distinguishes correct from incorrect executions requires
labelled data with both passing and failing examples of traces.
We require a small fraction of the overall execution traces to
be labelled, which is likely to be a manual process. As a result,
our proposed approach for test oracle is not fully automated.
We hypothesize that the time invested in labelling a small
proportion of the traces is justified with respect to the benefit
gained in automatically classifying the remaining majority
of traces. In contrast, with no classifier, the developer would
have had to specify expected output for all the tests, which
is clearly more time consuming than the small proportion of
tests we need labelled.

NN Architecture. An execution trace in our approach
comprises multiple lines, with each line containing informa-
tion on a method invocation. Our architecture for encoding
and classifying an execution trace uses multiple components:
(1) Value encoder for encoding values within the trace line to
a distributed vector representation, (2) Trace encoder encod-
ing trace lines within a variable-length trace to a single vector,
and (3) Trace Classifier that accepts the trace representation
and classifies the trace. The components in our architecture
is made up of LSTMs, one-hot encoders, and a multi-layer
perceptron.

Case Studies. We evaluate our approach using 4 subject
programs and tests from different application domains - a
single module from Ethereum project [2], a module from
Pytorch [36], one component within Microsoft SEAL encryp-
tion library [39] and a Linux stream editor [1]. One of the

4 subject programs were accompanied by both passing and
failing tests that we could directly use in our experiment. The
remaining three programs were only accompanied by passing
tests. We treated these programs as reference programs. We
then generated PUTs by artificially seeding faults into them.
We generated traces through the PUTs using the existing
tests, labelling the traces as passing or failing based on com-
parisons with traces from the reference program. We trained
a NN model for each PUT using a fraction of the labelled
traces. We found our approach for designing a NN classifica-
tion model was effective for programs from different domains.
We achieved high accuracies in detecting both failing and
passing traces, with an average precision of 89% and recall of
88%. Only a small fraction of the overall traces (average 15%)
needed to be labelled for training the classification models.
In summary, the paper makes the following contributions:

∙ Given a PUT and its test inputs, we provide a frame-
work that instruments the PUT and gathers test exe-
cution traces as sequences of method invocations.

∙ A NN component for encoding variable-sized execution
traces into fixed length vectors.

∙ A NN for classifying the execution traces as pass or
fail.

∙ We provide empirical evidence that this approach yields
effective test oracles for programs and tests from dif-
ferent application domains.

2 BACKGROUND
When a test oracle observes a test execution, it returns a test
verdict, which is either pass or fail, depending on whether
the observations match expected behaviour. A test execution
is execution of the PUT with a test input. The importance
of oracles as an integral part of the testing process has been
a key topic of research for over three decades. We distinguish
four different kinds of test oracles, based on the survey by
Barr et al. in 2015 [11]. The most common form of test oracle
is a specified oracle, one that judges behavioural aspects of
the system under test with respect to formal specifications.
Although formal specifications are effective in identifying
failures, defining and maintaining such specifications is ex-
pensive and also relatively rare in practice. Implicit test
oracles require no domain knowledge and are easy to obtain
at no cost. However, they are limited in their scope as they
are only able to reveal particular anomalies like buffer over-
flows, segmentation faults, deadlocks. Derived test oracles use
documentations or system executions, to judge a system’s be-
haviour, when specified test oracles are unavailable. However,
derived test oracles, like metamorphic relations and inferring
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invariants, is either not automated or it is inaccurate and
irrelevant making it challenging to use.

For many systems and much of testing as currently prac-
tised in industry, the tester does not have the luxury of
formal specifications or assertions or even automated partial
oracles [21, 22]. Statistical analysis and machine learning
techniques provide a useful alternative for understanding
software behaviour using data gathered from a large set of
test executions.

2.1 Machine Learning for Software
Testing

Briand et al. [14], in 2008, presented a comprehensive overview
of existing techniques that apply machine learning for ad-
dressing testing challenges. Among these, the closest related
work is that of Bowring et al. in 2004 [13]. They proposed
an active learning approach to build a classifier of program
behaviours using a frequency profile of single events in the
execution trace. Evaluation of their approach was conducted
over one small program whose specific structure was well
suited to their technique. Machine learning techniques have
also been used in fault detection. Brun and Ernst, in 2004 [15],
explored the use of support vector machines and decision
trees to rank program properties, provided by the user, that
are likely to indicate errors in the program. Podgurski et al.,
in 2003 [37], use clustering over function call profiles to de-
termine which failure reports are likely to be manifestations
of an underlying error. A training step determines which fea-
tures are of interest by evaluating those that enable a model
to distinguish failures from non-failures. The technique does
not consider passing runs. In their experiments, most clusters
contain failures resulting from a single error.

More recently, Almaghairbe et al. [6] proposed an unsu-
pervised learning technique to classify unlabelled execution
traces of simple programs. They gather two kinds of execu-
tion traces, one with only inputs and outputs, and another
that includes the sequence of method entry and exit points,
with only method names. Arguments and return values are
not used. They use agglomerative hierarchical clustering algo-
rithms to build an automated test oracle, assuming passing
traces are grouped into large, dense clusters and failing traces
into many small clusters. They evaluate their technique on
3 programs from the SIR repository [19]. The proposed ap-
proach has several limitations. They only support programs
with strings as inputs. They do not consider correct clas-
sification of passing traces. The accuracy achieved by the
technique is not high, classifying approximately 60% of the
failures. Additionally, fraction of outputs that need to be
examined by the developer is around 40% of the total tests,
which is considerably higher than the labelled data used in
our approach. We objectively compared the accuracy achieved
by the hierarchical clustering technique against our approach
using 5 PUTs, discussed in Section 5. We found our approach
achieves significantly higher accuracy in classifying program
executions across all case studies.

Existing work using execution traces for bug detection
has primarily been based on clustering techniques. Neural
networks, especially with deep learning, have been very suc-
cessful for complex classification problems in other domains

like natural language processing, speech recognition, com-
puter vision. There is limited work exploring their benefits
for software testing problems.

Neural Networks for Test Oracles. NNs were first used by
Vanmali et al. [40] in 2002 to simulate behaviour of simple
programs using their previous version, and applied this model
to regression testing of unchanged functionalities. Aggarwal
et al. [3] and Jin et al. [28] applied the same approach to
test a triangle classification program, that computes the rela-
tionship among three edge inputs to determine the type of
triangle. The few existing approaches using NNs have been
applied to simple programs having small I/O domains. The
following challenges have not been addressed in existing work,
1. Training with test execution data and their vector repre-
sentation – Existing work only considers program inputs and
outputs that are of primitive data types (integers, doubles,
characters). Test data for real programs often use complex
data structures and data types defined in libraries. There
is a need for techniques that encode such data. In addition,
existing work has not attempted to use program execution in-
formation in NNs to classify tests. Achieving this will require
novel techniques for encoding execution traces and designing
a NN that can learn from them.
2. Test oracles for industrial case studies - Realistic programs
with complex behaviours and input data structures has not
been previously explored.
3. Effort for generating labelled training data - Training data
in existing work has been over simple programs, like the
triangle classification program, where labelling the tests was
straightforward. Availability of labelled data that includes
failing tests has not been previously discussed. Additionally,
the proportion of labelled data needed for training and its ef-
fect on model prediction accuracy has not been systematically
explored.

Deep Learning for Software Testing. The performance of
neural networks as classifiers was boosted with the birth
of deep learning in 2006 [23]. Deep learning methods have
not been explored extensively for software testing, and in
particular for the test oracle problem. Recently, a few tech-
niques have been proposed for automatic pattern-based bug
detection. For example, Pradel et al. [38] proposed a deep
learning-based static analysis for automatic name-based bug
detection and Allamanis et al. [4] used graph-based neural
static analysis for detecting variable misuse bugs. In addition
to these techniques, several other deep learning methods for
statically representing code have been developed [5, 8]. We
do not discuss these further since we are interested in execu-
tion trace classification and in NNs that use dynamic trace
information rather than a static view of the code.

Embedding Execution Traces for Neural Networks. One
of the main contributions in this paper is an approach for
embedding information in execution traces as a fixed length
vector to be fed into the neural network. There is limited work
in using representations of execution traces. Wang et al. [41]
proposed embeddings of execution traces in 2017. They use
execution traces captured as a sequence of variable values at
different program points. A program point is when a variable
gets updated. Their approach uses recurrent NNs to sum-
marise the information in the execution trace. Embedding
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of the traces is applied to an existing program repair tool.
The work presented by Wang et al. has several limitations
- 1. Capturing execution traces as sequences of updates to
every variable in the program has an extremely high overhead
and will not scale to large programs. The paper does not
describe how the execution traces are captured, they simply
assume they have them. 2. The approach does not discuss
how variables of complex data types such as structs, arrays,
pointers, objects are encoded. It is not clear if the traces
only capture updates to user-defined variables, or if system
variables are also taken into account. 3. The evaluation uses
three simple, small programs (eg. counting parentheses in a
string) from students in an introductory programming course.
The complexity and scale of real programs is not assessed in
their experiments. Their technique for capturing and directly
embedding traces as sequences of updates to every variable is
infeasible in real programs. Our approach captures and em-
beds traces as sequences of method invocations and updates
to global variables, which scales better than tracking every
program variable. We have implemented our instrumentation
in the LLVM compiler framework that is language agnostic
and scales to industry-sized programs. We support all types
of variables and objects, including system defined variables.

3 APPROACH
Our approach for building an automated test oracle for clas-
sifying execution traces has the following steps,
Step 1: Instrument the PUT to gather traces when execut-

ing the test inputs.
Step 2: Preprocess the traces to prune unnecessary infor-

mation.
Step 3: Encode the preprocessed traces into vectors that

can be accepted by the neural network.
Step 4: Design a NN model that takes as input an encoded

trace, and outputs a verdict of pass or fail for that
trace.

Figure 2a illustrates the steps in our approach, with the
bottom half of the figure depicting steps 3 and 4 for any
given preprocessed trace from step 2. We discuss each of the
steps in the rest of this Section.

3.1 Instrument and Gather Traces
For every test input executed through the PUT, we aim to
collect an execution trace as a sequence of method invoca-
tions, where we capture the name of the method being called,
values and data types of parameters, return values and their
types, and, finally, the name of the parent method in the call
graph. We find gathering further information, eg. updates to
local variables within each method, incurs a significant over-
head and is difficult to scale to large programs. To gather this
information we use the middleware of LLVM [32] and instru-
ment the intermediate representation (IR) of programs. This
allows our implementation to be language-agnostic. LLVM
provides front-end support for multiple programming lan-
guages, such as C/C++, CUDA, Haskell, Swift, Rust among
others, along with numerous libraries for optimisation and
code generation.

To perform the instrumentation, we traverse the PUT,
visiting each method. Every time a method invocation is
identified, code is injected to trace the caller-callee pair, the

arguments and the return values. At the end of the program,
code is inserted to write the trace information to the output.

Each trace contains a sequence of method invocations.
This sequence comprises multiple lines, each line being a
tuple (𝑛𝑝, 𝑛𝑐, 𝑟, 𝑎) that represents a single method invocation
within it having:

∙ The names of the caller (parent) 𝑛𝑝 and called 𝑛𝑐

functions.
∙ Return values 𝑟 of the call, if any.
∙ Arguments passed 𝑎, if any.

The order of trace lines or method invocations is the order in
which the methods complete and return to the calling point.
We support all variable types including primitive types (such
as int, float, char, bool), composite data types (such
as structs, classes, arrays) defined by a user or library, and
pointers for return and argument values. Structs and classes
are associated with a sequence of values for their internal
fields. We instrument these data structures in a depth first
fashion, until all primitive types are traced. For pointers, we
monitor the values they refer to.

3.2 Training Set
We execute the instrumented program with each test input in
the test suite to gather a set of traces. A subset of the traces
is labelled and used in training the classification model. To
label the traces as pass or fail, we compare actual outputs
through the PUT with expected outputs provided by a refer-
ence program or the specifications. Section 4.1 discusses how
we label traces for the subject programs in our experiment.
It is worth noting that in our approach, the developer will
only need to provide expected outputs for a small proportion
of tests rather than the whole test suite. In the absence of ex-
pected output in tests, how will tests be labelled is a common
question. Answering this question will depend on what is
currently being done by the developer or organisation for clas-
sifying tests as pass or fail. Our approach will entail applying
the same practice to labelling, albeit to a significantly smaller
proportion of tests. To avoid data leakage in our experiment
in Section 4, we ensure that expected output is removed from
the traces. We also remove exceptions, assertions and any
other information in the program or test code that may act
as a test oracle. This is further discussed in Section 4.2.

3.3 Preprocessing
The execution traces gathered with our approach include
information on methods declared in external libraries, called
during the linking phase. To keep the length of the traces
tractable and relevant, we preprocess the traces to only keep
trace lines for methods that are defined within the module,
and remove trace lines for declared functions that are not
defined, but simply linked to later.

For method invocations within loops, a new trace line is
created for each invocation of the same method within the
loop. For loops with large numbers of iterations, this can
lead to redundancy when the method is invoked with simi-
lar arguments and return values. We address this potential
redundancy issue by applying average pooling to trace lines
with identical caller-callee methods within loops.
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(a) Gathering traces, encoding them, and using NNs to clas-
sify them.

(b) Encoder 1 representing a single line in a trace as a vec-
tor containing function caller, callee names, arguments and
return values.

Figure 2: High-level architecture of our approach and Encoder 1 description.

3.4 Neural Network Model
In this step, we perform the crucial task of designing a neural
network that learns to classify the pre-processed traces as
passing or failing. Shape and size of the input traces vary
widely, and this presents a challenge when designing a NN
that accepts fixed length vectors summarizing the traces.
To address this, our network comprises three components
that are trained jointly and end-to-end: 1. a ValEnc that
encodes values (such as the values of arguments and return
values) into 𝐷𝑉 -dimensional distributed vector representa-
tions, shown within Encoder 1 in Figure 2b, 2. a TrEnc that
encodes variable-sized traces into a single 𝐷𝑇 -dimensional
vector, shown as LSTM in Figure 2a, and finally, 3. a Trace-
Classifier that accepts the trace representation for state
and predicts whether the trace is passing or failing. The
Multi-layer Perceptron in Figure 2a represents the Trace-
Classifier. We describe each component in detail in the rest
of this section.

Encoding Values Values within the trace provide use-
ful indications about classifying a trace. However, values
— such as ints, structs, and floats — vary widely in shape
and size. We, therefore, design models that can summarize
variable-sized sequences into fixed-length representations. In
the machine learning literature, we predominantly find three
kinds of models that can achieve this: recurrent neural net-
works (RNNs), 1D convolutional neural networks (CNN) and
transformers. In this work, we employ LSTMs [24] — a com-
monly used flavour of RNNs. Testing other models is left as
future work. At a high-level RNNs are recurrent functions
that accept a vector h𝑡 of the current state and an input vec-
tor x𝑡 and compute a new state vector h𝑡+1 = 𝑅𝑁𝑁(x𝑡,h𝑡)
which “summarizes” the sequence of inputs up to time 𝑡. A
special initial state h0 is used at 𝑡 = 0.

To encode a value 𝑣, we decompose it into a sequence of
primitives 𝑣 = [𝑝0, 𝑝1, ...] (integers, floats, characters, etc.).
Each primitive 𝑝𝑖 is then represented as a binary vector
b𝑖 = 𝑒(𝑝𝑖) containing its bit representation padded to the
largest primitive data type of the task. For example, if int64
is the largest primitive then all b𝑖s have dimensionality of 64.
This allows us to represent all values (integers, floats, strings,
structs, pointers, etc.) as a unified sequence of binary vectors.

We encode 𝑣 into a 𝐷𝑉 -dimensional vector by computing

ValEnc(𝑣) = 𝐿𝑆𝑇𝑀𝑣(𝑒(𝑝𝐿)𝐿,ValEnc([𝑝0, 𝑝1, ..., 𝑝𝐿−1])),

where 𝐿𝑆𝑇𝑀𝑣 is the LSTM that sequentially encodes the b𝑖s.
Note that we use the same ValEnc for encoding arguments
and return values, as seen in Figure 2b. The intuition behind
this approach is that the bits of each primitive can contain
valuable information. For example, the bits corresponding to
the exponent range of a float can provide information about
the order of magnitude of the represented number, which in
turn may be able to discriminate between passing and failing
traces.

Representing a Single Trace Line Armed with a neu-
ral network component that encodes values, we can now
represent a single line (𝑛𝑝, 𝑛𝑐, 𝑟, 𝑎) of the trace. To do this,
we use ValEnc to encode the arguments 𝑎 and the return
value 𝑟. We concatenate these representations along with
one-hot representations of the caller and callee identities, as
shown in Figure 2b. Specifically, the vector encoding ti of
the 𝑖th trace line is the concatenation

ti = [ValEnc(𝑎),ValEnc(𝑟), 1Hot(𝑛𝑝), 1Hot(𝑛𝑐)] ,

where 1Hot is a function that takes as input the names of the
parent or called methods and returns a one-hot vector that
uniquely encodes that method name. For methods that are
rare (appear fewer than 𝑘𝑚𝑖𝑛 times) in our data, 1Hot col-
lapses them to a single special Unknown (UNK) name. This
is similar to other machine learning and natural language
processing models and reduces sparsity often improving gen-
eralization. The resulting vector ti has size 2𝐷𝑉 + 2𝑘 where
𝑘 is the size of each one-hot vector.

Encoding Traces Now that we have built a neural net-
work component that encodes single lines within a trace, we
design TrEnc that accepts a sequence of trace line repre-
sentations t0...t𝑁 and summarizes them into a single 𝐷𝑇 -
dimensional vector. We use an LSTM with a hidden size 𝐷𝑇 ,
and thus

TrEnc(t0...t𝑁 ) = 𝐿𝑆𝑇𝑀𝑡𝑟 (tN,TrEnc(t0...t𝑁−1)) ,

where 𝐿𝑆𝑇𝑀𝑡𝑟() is an LSTM network that summarizes the
trace line representations.

Classifying Traces With the neural network components
described so far we have managed to encode traces into fixed
length vector representations. The final step is to use those
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computed representations to make a classification decision.
We treat failing traces as the positive class and passing traces
as the negative class since detecting failing runs is of more
interest in testing. We compute the probability that a trace
is failing as

𝑃 (fail) = TraceClassifier([TrEnc(t0...t𝑁 )]),

where the input of TraceClassifier is the output vector
of TrEnc. Our implementation of TraceClassifier is a
multilayer perceptron (MLP) with sigmoid non-linearities and
a single output, which can be viewed as the probability that
the trace is a failing trace. It follows that 𝑃 (pass) = 1−𝑃 (fail).

Training and Implementation Details We train our
network end-to-end in a supervised fashion, minimizing the
binary cross entropy loss. All network parameters (parameters
of 𝐿𝑆𝑇𝑀𝑣 and 𝐿𝑆𝑇𝑀𝑡𝑟 and parameters of the MLP) are
initialized with random noise. For all the runs on our network
we use 𝐷𝑉 = 128, 𝐷𝑇 = 256. The TraceClassifier is an
MLP with 3 hidden layers of size 256, 128 and 64. We use
the Adam optimizer [30] with a learning rate of 10𝑒− 5.

For our subject programs, we find the aforementioned
feature values to be optimal for performance and training
time, after having experimented with other NN architectures,
varying the 𝐷𝑉 , 𝐷𝑇 sizes, and the hidden layers in the MLP.
We explored increasing 𝐷𝑉 to 256, 512, 𝐷𝑇 to 512, 1024 and
size of hidden layers to 512 and 1024.

To handle class imbalance in datasets, we explicitly coun-
teract the imbalance in the loss function by down-weighting
the samples within the most popular class such that samples
of both class participate equally within this function.

Our implementation of the proposed approach is available
at https:// github.com/fivosts/Learning-over-test-executions.

4 EXPERIMENT
In our experiment, we evaluate the feasibility and accuracy
of the NN architecture proposed in Section 3 to classify
execution traces for 4 subject programs and their associated
test suites. We investigate the following questions regarding
feasibility and effectiveness:

Q1. Precision, Recall and Specificity: What is the
precision, recall and specificity achieved over the subject pro-
grams?

To answer this question, we use our tool to instrument
the source code to record execution traces as sequences of
method invocations, arguments and return values. A small
fraction of the execution traces are labelled (training set)
and fed to our framework to infer a classification model. We
then evaluate precision, recall and specificity achieved by
the model over unseen execution traces (test set) for that
program. The test set includes both passing and failing test
executions. We use Monte Carlo cross-validation, creating
random splits of the dataset into training and test data. We
created 15 such random splits and averaged precision, recall
and specificity computed over them. In our experiments, we
do not use a validation set to tune the hyper-parameters in
the NN model.

Q2. Size of training set: How does size of the training
set affect precision and recall of the classification model?

For each program, we vary the size of training set from 5%
to 30% of the overall execution traces and observe its effect
on precision and recall achieved.

Q3. Comparison against state of art: How does the
precision, recall and specificity achieved by our technique com-
pare against agglomerative hierarchical clustering, proposed
by Almaghairbe et al. [6] in 2017?

We choose to compare against the hierarchical clustering
work as it is the most relevant and recent in classifying
execution traces. Traces used in their work are sequences
of method invocations, similar to our approach. Other test
oracle work that use NNs is not used in the comparison as
they do not work over execution traces, and are limited in
their applicability to programs with numerical input and
output which is not the case for programs in our experiment.

All experiments are performed on a single machine with 4
Intel i5-6500 CPU cores, Nvidia RTX 2060 GPU, 16GB of
memory.

4.1 Labelling Traces
All our subject programs are open source, and most of them
were only accompanied by passing tests. This is not uncomm-
mon as most released versions of programs are correct for the
given tests. We take these correct programs to be reference
implementations. To enable evaluation of our approach that
distinguishes correct versus incorrect executions, we need sub-
ject programs with bugs. We, therefore, generate PUTs by
automatically mutating the reference implementation using
common mutation operators [27] listed below,
(1) Arithmetic operator replacement applied to {+,−, *, /,

−−,++}.
(2) Logical connector replacement applied to {&&, ||, !}.
(3) Bitwise operator replacement applied to {&, |,∧, , <<

,>>}.
(4) Assignment operator replacement applied to

{+ =,− =, * =, / =,% =, <<=, >>=,& =, | =,∧ =}.

Figure 3: Labelling test executions by matching ac-
tual and expected behavior.

A PUT is generated by seeding a single fault into the reference
implementation at a random location using one of the above
mutation operators. We used an independent open source
mutation tool1 to generate PUTs from a given reference
program. Figure 3 shows a PUT generated by seeding a
single fault into a reference program. As seen in Figure 3, we
run each test, 𝑇𝑖, in the test suite, through both the reference
program and PUT, and label the trace as passing if the

1https://github.com/chao-peng/mutec
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expected output, 𝐸𝑂𝑖, from the reference matches the actual
output, 𝐴𝑂𝑖, from the PUT. If they do not match, the trace
is labelled as failing. We rejected PUTs from mutations that
did not result in any failing traces (outputs always match
with the reference). This avoids the problem of equivalent
mutants. All the PUTs in our experiment had both passing
and failing traces.

4.2 Subject Programs
We chose subject programs from different domains to assess
applicability of our approach, namely from the blockchain,
deep learning, encryption and text editing domains. A de-
scription of the programs and associated tests is as follows.
1. Ethereum [2] is an open-source platform based on blockchain
technology, which supports smart contracts. Within it, we
evaluate our approach over the Difficulty module that cal-
culates the mining difficulty of a block, in relation to different
versions (eras) of the cryptocurrency (Byzantium, Homestead,
Constantinople etc.). The calculation is based on five fields
of an Ethereum block, specified in the test input.

Tests. We use the default test inputs provided by Ethereum’s
master test suite for the Difficulty module. We test this
module for the Byzantium era of the cryptocurrency (version
3.0). The test suite contains 2254 automatically generated
test inputs. Each test input contains one hex field for the test
input of the difficulty formula and another hex field for the
expected output of the program. All the test inputs provided
with the module are passing tests with the actual output
equal to the expected output. As a result, we use the pro-
vided module as a reference implementation. As described in
Section 4.1, we seed faults into the reference implementation
to generate PUTs, each containing a single mutation. For
the difficulty module, we generate 2 PUTs – 1. Ethereum-SE
with a seeded fault in the core functionality of the difficulty
module, and 2. Ethereum-CD with a fault seeded in one of
the functions that is external to the core function but appears
in the call graph of the module. The balance between passing
and failing tests varies between the two PUTs, Ethereum-CD
being perfectly balanced and Ethereum-SE being slightly
imbalanced (828 failing and 1426 passing tests).
2. Pytorch [36] is an optimized tensor library for deep learn-
ing, widely used in research. In our experiment, we evaluate
our model over the intrusive ptr class, which implements
a pointer type with an embedded reference count. We chose
this class because it had a sizeable number of tests (other
modules had < 20 published tests).

Tests. Implementation of the class is accompanied by 638
tests, all of which are passing. We, thus, use this as the refer-
ence implementation. As with Ethereum, we apply mutations
to the intrusive ptr implementation to generate a single
PUT. Upon comparison with the reference, 318 of the exist-
ing tests are labelled passing through the PUT and 320 as
failing.
3. Microsoft SEAL [39] is an open-source encryption li-
brary. In our experiment, we study one component within
Microsoft SEAL, the Encryptor module, which is accompa-
nied by tests. This component is responsible for performing
data encryption.

Tests. The Encryptor component is accompanied by 133
tests. The provided tests were all passing tests, with matching
expected and actual output. As with previous programs, we
generate a PUT by mutating the original implementation.
On the PUT, 11 tests fail and 122 pass.
4. Sed [1] is a Linux stream editor that performs text trans-
formations on an input stream.

Tests. We use the fifth version of Sed available in the SIR
repository [19]. This version is accompanied by 370 tests, of
which 352 are passing and 18 are failing. The failing tests
point to real faults in this version. Since the implementation
was accompanied by both passing and failing, we used it as
the PUT. We did not seed faults to generate the PUT.

Checks to avoid data leakage. We ensure no test oracle
data is leaked into traces. We remove expected outputs, as-
sertions, exceptions, test names and any other information
that may act directly or indirectly as a test oracle. For ex-
ample, Ethereum uses BOOST testing framework to deploy its
unit tests. We remove expected outputs and assertions in the
test code that compare actual with the expected output e.g.
BOOST CHECK EQUAL.

For PUTs generated by seeding faults into the reference
implementation, we only use one PUT for each reference
implementation except in the case of Ethereum where we
generated two PUTs, since faults were seeded in different files.
Generating more PUTs for each reference implementation
would be easy to do. However, we found our results across
PUTs for a given reference program only varied slightly. As a
result, we only report results over one to two PUTs for each
reference implementation.

4.3 Performance Measurement
For each PUT, we evaluate performance of the classification
model over unseen execution traces. As mentioned in Sec-
tion 3.4, we use positive labels for failing traces and negative
labels for passing. We measure

(1) Precision as the ratio of number of traces correctly
classified as “fail” (TP) to the total number of traces
labelled as “fail” by the model (TP + FP).

(2) Recall as the ratio of failing traces that were correctly
identified (TP/(TP + FN)).

(3) Specificity or true negative rate (TNR) as the ratio of
passing traces that were correctly identified (TN /(TN
+ FP)).

TP, FP, TN, FN represent true positive, false positive, true
negative and false negative, respectively.

4.4 Hierarchical Clustering
In research question 3 in our experiment, we compare the
classification accuracy of our approach against agglomerative
hierarchical clustering proposed by Almaghairbe et al. [6].
Their technique also considers execution traces as sequences
of method calls, but only encoding callee names. Caller names,
return values and arguments are discarded. We attempted
to add the discarded information, but found the technique
was unable to scale to large number of traces due to both
memory limitations and a time complexity of 𝒪(𝑛3) where n
is the number of traces. For setting clustering parameters for
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each subject program, we evaluate different types of linkage
(single, average, complete) and a range of different cluster
counts (as a percentage of the total number of tests): 1, 5,
10, 20 and 25%. We use Euclidean distance as the distance
measure for clustering. For each program, we report the best
clustering results achieved over all parameter settings.

5 RESULTS AND ANALYSIS
In this section, we present and discuss our results in the
context of the research questions presented in Section 4.

5.1 Q1. Precision, Recall and Specificity
Table 1 shows the precision, recall and specificity achieved
by the classification models in our approach for the differ-
ent PUTs. Results with the hierarchical clustering approach
by Almaghairbe et al. [6] are also presented in Table 1 for
comparison, but this is discussed in Q3 in Section 5.3. The
column showing % of traces used in training varies across
programs, we show the lowest percentage that is needed to
achieve near maximal precision and recall.

The classification models for all 5 PUTs achieve more
than 75% precision and recall, with an average of 89% and
88%, respectively. Our technique works particularly well for
Pytorch and Sed, achieving >= 94%. This implies that the
number of false positives in the classification is very low and
a large majority of the failing traces are correctly identified.

The classification models for all PUTs also achieve high
specificity (>= 79%, average 92%). This implies that the NN
models are able to learn runtime patterns that distinguish
not only failing executions, but also passing executions with
a high degree of accuracy. These results are unprecedented
as we are not aware of any technique in the literature that
can classify both passing and failing executions at this level
of accuracy.

Analysis. To understand the results in Table 1, for each of
the PUTs, we inspected and compared passing and failing
traces using a combination of longest common subsequence,
syntactic diffs, and manual inspection. We also performed
ablation - systematically removing information (one param-
eter at a time) from the traces, training new classification
models with the modified traces and observing their effect on
precision, recall and specificity (TNR). In our experiments,
we systematically remove the following parameters from the
original traces – function call names, arguments, and return
values. Table 2 shows the results from our ablation study.
We discuss results for each of the programs in the following
paragraphs.

Over SEAL Encryptor, our approach achieves 75% preci-
sion, 86% recall and 98% specificity when trained with 30%
of the traces. Encryptor requires a higher fraction of traces
for training when compared to other PUTs, as the number of
failing traces is very small (= 11), unlike other programs. Al-
though we handle imbalance in datasets by weighting samples
in the loss function, the NN still needs some representatives
of the failing class during training. Using 10% of the traces
in training, will only provide one example of failing trace
(10% of 11) which is not enough for the NN model to learn to
distinguish failing versus passing behaviour. Training using
30% of the traces includes 3 failing traces which allows the

NN to achieve 75% precision. High precision with only 3
failing traces is because all the failing traces for this program
have the same call sequence, which is sufficiently different
from passing traces. Passing traces do not all have the same
sequence. However, due to the availability of a larger set
of passing traces (training with 30% is 40 passing traces),
the NN is able to identify the different method call patterns
in passing traces accurately (98% specificity). The ablation
study in Table 2 shows that all the parameters contribute
to model performance as removing them has a detrimental
effect.

For PyTorch, we achieve 99% precision, 98% recall and
99% specificity when trained with 10% of the traces. The
dataset for PyTorch PUT is balanced (318 passing and 320
failing). 10% of the traces during training provides sufficient
examples from both passing and failing classes for the NN to
learn to distinguish them. We find the reason for the superior
performance of our model over PyTorch is because all failing
traces have significantly fewer trace lines than passing traces.
The consistent difference in length of traces between the two
classes allows the NN to easily distinguish them. The ablation
study in Table 2 shows arguments in traces matter for model
performance, while method names and return values are
irrelevant.

With Sed, our model achieves 94% precision and recall,
and 99% specificity using 10% of the traces in training. The
dataset for Sed is unbalanced, with only 18 failing and 352
passing. 10% of the traces in training uses 2 failing tests
and 35 passing tests. Given the extremely small sample of
failing tests, it is surprising that the model classifies and
identifies failing traces with such high precision and recall.
To understand this, we examined both the passing and failing
trace lines. We find the length of passing and failing traces is
similar. All failing traces, however, have a call to a function,
getChar, towards the end of the trace. This function call is
absent in passing traces. We believe associating this function
call to failing traces may have helped the performance of the
NN. The ablation study in Table 2 shows all the parameters
considered in our traces are important for model performance.

For Ethereum-CD, our model achieves 80% precision, 82%
recall and 79% specificity when trained with 15% of the traces
- 169 passing and 169 failing. Ethereum-CD was generated
from the reference implementation using an arithmetic op-
erator mutation in a function deeply embedded in the call
graph for the difficulty module. Differences between failing
and passing traces are not apparent, and analysing longest
common subsequence, syntactic diff and manual inspections
did not reveal any characteristic feature for failing or passing
traces. We believe the model performance of around 80%
precision, recall and specificity is due to the similarity be-
tween passing and failing traces and the esoteric nature of
the mutation. Ablation study for this program reveals that
all features in the traces slightly impact model performance.

For Ethereum-SE, our model achieves 99% precision, 82%
recall and 86% specificity with 15% traces in training - 214
failing and 124 passing. Unlike Ethereum-CD, mutation to
generate Ethereum-SE was in the core functionality. Failing
traces when compared to passing traces had differences to-
wards the end of the trace which is easily distinguished by
the NN. Curiously, removing return values in the ablation
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PUT Lines of % Traces Total Our Approach Hierarchical Clustering [6]
Code for training # Traces Precision Recall TNR Precision Recall TNR

Ethereum-CD 55927 15 2254 0.80 0.82 0.79 1.0 0.49 1.0
Ethereum-SE 55927 15 2254 0.99 0.82 0.86 1.0 0.25 1.0
Pytorch 21090 10 638 0.99 0.98 0.99 0.48 1.0 0.16
SEAL Encryptor 25967 30 132 0.75 0.86 0.98 0.16 0.36 0.83
Sed 4492 10 370 0.94 0.94 0.99 0.35 0.63 0.86

Table 1: Precision, Recall and True Negative rate (TNR) using our approach and hierarchical clustering.

study, increases recall and specificity. This may be because
the model was previously overfitting to return values in traces
which may not have been relevant to the classification.

Summary. Overall, we find NN models for all our PUTs
perform well as a test oracle, achieving an average of 89%
precision, 88% recall and 92% specificity. The NN models
perform exceptionally well for programs whose traces have
characteristic distinguishing features between passing and
failing executions, such as differences in trace lengths or
presence of certain function call patterns. In the absence of
such features, NNs can still do well if it has enough training
samples, as in Ethereum-CD. We also find our approach can
cope effectively with unbalanced datasets – three of the five
programs in our experiment have unbalanced passing and
failing traces.

PUT Omitted Info. P R TNR

Ethereum-CDFunction names 0.63 0.64 0.62
Return values 0.68 0.87 0.60
Arguments 0.54 0.78 0.35

Ethereum-SEFunction names 0.96 0.84 0.35
Return values 0.99 0.97 0.93
Arguments 0.96 0.84 0.33

Pytorch Function names 0.99 1.0 1.0
Return values 0.99 0.99 0.99
Arguments 0.51 0.99 0.04

Seal
Encryptor

Function names 0.53 0.87 0.92
Return values 0.46 0.99 0.90
Arguments 0.28 0.88 0.76

Sed Function names 0.19 0.72 0.24
Return values 0.48 0.52 0.85
Arguments 0.30 0.40 0.73

Table 2: Precision (P), Recall (R) and Specificity
(TNR) for each PUT omitting certain trace informa-
tion.

5.2 Q2. Size of training set
Figure 4 shows precision and recall achieved by our approach
with different training set sizes. The fraction of traces needed
in training to achieve near maximal performance was 10% to
30% across the PUTs. Excluding SEAL Encryptor, all the
other programs only needed to be trained over 15% of the
traces to achieve near maximal performance. SEAL encryptor
had very few failing traces, requiring a larger fraction of
traces to get sufficient representation of failing classes during
training. As seen in the plots in Figure 4, increasing the %
of traces used in training does not increase precision and
recall for all PUTs. For instance, Pytorch and Sed observe a
dramatic increase in precision and recall when going from 5
to 10% traces in training. Performance, however, stagnates
after that point with increasing traces. With Ethereum-CD
and Ethereum-SE, precision or recall becomes worse after
20% traces. This maybe because the model is overfitting to
the training traces.

It is also worth noting that the absolute size of our training
set varies across subject programs. We find our approach
works with training sets with as few as 3 failing traces to
as many as 214. The range of passing tests in training was
between 31 and 169.

5.3 Q3. Comparison against state of art
Table 1 presents precision, recall, and specificity (TNR)
achieved by the agglomerative hierarchical clustering pro-
posed by Almaghairbe et al. [6] on each of the PUTs. Com-
paring the precision, recall and TNR of our approach versus
hierarchical clustering, we find our approach clearly outper-
forms the clustering approach on all but the Ethereum-CD
PUT. This is because the hierarchical clustering assumption
does not hold for these programs. According to this assump-
tion, passing traces tend to be grouped in a few big clusters
and failing traces are grouped into many small clusters. How-
ever, for these programs, passing traces tend to be grouped
in many small clusters based on their call sequence pattern,
making it hard to distinguish them from failing traces by
simply comparing cluster sizes.

With Ethereum-CD, the hierarchical clustering approach
achieves precision and specificity of 100% and a recall of 49%.
This is achieved with complete-linkage clustering, Euclidean
distance and a cluster count equal to 10% of total traces. In
contrast our approach achieves a precision of 80%, recall of
82% and specificity of 79%. To enable better comparison, we
plot the precision-recall curve of the NN model in Figure 5
for Ethereum-CD, using 15% of the traces in training.

This curve shows the precision and recall of our trained
model with respect to different values of the classification
threshold. It is clear from the plot that for the same value
of recall (49%), hierarchical clutering performs marginally
better than our approach - 100% versus 99%. Hierarchical
clustering works well over the Ethereum-CD PUT because
the traces are clustered into just one big passing cluster and
one failing cluster. Lack of cluster fragmentation improved
accuracy of the hierarchical clustering approach. Nevertheless,
our model achieves comparable performance for such traces.
In addition, our model allows trade off between precision
and recall by changing the classification threshold which may
be driven by requirements or priorities of the use case. This
tradeoff is not possible with the clustering approach.

5.4 Threats to Validity
We see three threats to validity of our experiment based on
the selection of subject programs and associated tests.

First, PUTs for 3 out of the 4 subject programs in our
experiment were generated by seeding faults into a refer-
ence implementation. A reference implementation with only
passing tests is not suitable for evaluating our approach. To
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Figure 4: Precision and recall achieved by classification model over each PUT.

Figure 5: Precision-Recall curve for Ethereum-CD.

address this, we generated a faulty implementation and ran
the original tests through the PUT to gather both passing
and failing traces. It is possible using real faults in place of
seeded faults may lead to different results. However, Andrews
et al. have shown the use of seeded faults leads to conclusions
similar to those obtained using real faults [10, 26]. For one
of the subject programs, Sed, we did not artificially seed
faults, but instead used the existing implementation as it was
accompanied by both passing and failing tests.

Second, the number of tests that accompanied our sub-
ject programs was not very large, ranging from 132 to 2254
tests. The NN models in our experiments produced good
performance with small to medium sized test suites that may
be automatically or manually generated. Our approach is
constrained by the amount of training data and not by the
size of the test suite. As a result for programs accompanied
by large test suites, the NN model will need a larger training
set (fraction of traces to be used in training might still be
15%). Nevertheless, the labelling effort for a fraction of the
tests in our approach is still less than the current practise of
labelling all the tests.

Finally, we conducted our study on subject programs from
4 different application domains which is not representative
of all application domains. Given that our approach has
no domain specific constraints, we believe it will be widely
applicable.

6 CONCLUSION
In this paper, we propose a novel approach for designing a
test oracle as a NN model, learning from execution traces
of a given program. We have implemented an end to end
framework for automating the steps in our approach, (1)
Gathering execution traces as sequences of method invoca-
tions, (2) Encoding variable length execution traces into a
fixed length vector, (3) Designing a NN model that uses the
trace information to classify the trace as pass or fail.

We evaluated the approach using 5 realistic PUTs and tests.
We found the classification model for each PUT was effective
in classifying passing and failing executions, achieving an
average of 89% precision, 88% recall and 92% specificity
while only training with an average 15% of the total traces.
We outperform the hierarchical clustering technique proposed
in recent literature by a large margin of accuracy for 4 out of
the 5 PUTs, and achieved comparable performance for the
other PUT.

Practical use. Our approach can be applied out of the box
for classifying tests for any software that can be compiled
to LLVM IR. We gather execution traces for test inputs
automatically, and require a small fraction of the traces to be
labelled with their pass or fail outcomes (average 15% in our
experiments). The remaining traces will then be classified
automatically. Our approach is promising with high accuracy
and has clear benefits over current industry practices where
developers label all the tests. Our future work will focus on
methods to improve the classification accuracy while reducing
the training data requirement using techniques like transfer
learning.
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